Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析

来源:互联网 发布:淘宝探路者官方旗舰店 编辑:程序博客网 时间:2024/04/27 15:38

在前面一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中, 介绍了在Android系统中Binder进程间通信机制中的Server角色是如何获得Service Manager远程接口的,即defaultServiceManager函数的实现。Server获得了Service Manager远程接口之后,就要把自己的Service添加到Service Manager中去,然后把自己启动起来,等待Client的请求。本文将通过分析源代码了解Server的启动过程是怎么样的。

本文通过一个具体的例子来说明Binder机制中Server的启动过程。我们知道,在Android系统中,提供了多媒体播放的功能,这个功能是以服 务的形式来提供的。这里,我们就通过分析MediaPlayerService的实现来了解Media Server的启动过程。

首先,看一下MediaPlayerService的类图,以便我们理解下面要描述的内容。

我们将要介绍的主角MediaPlayerService继承于BnMediaPlayerService类,熟悉Binder机制的同学应该知道BnMediaPlayerService是一个Binder Native类,用来处理Client请求的。BnMediaPlayerService继承于BnInterface类,BnInterface是一个模板类,它定义在frameworks/base/include/binder/IInterface.h文件中:templateclass BnInterface : public INTERFACE, public BBinder{public:    virtual sp      queryLocalInterface(const String16& _descriptor);    virtual const String16&     getInterfaceDescriptor() const; protected:    virtual IBinder*            onAsBinder();};这里可以看出,BnMediaPlayerService实际是继承了IMediaPlayerService和BBinder类。IMediaPlayerService和BBinder类又分别继承了IInterface和IBinder类,IInterface和IBinder类又同时继承了RefBase类。实际上,BnMediaPlayerService并不是直接接收到Client处发送过来的请求,而是使用了IPCThreadState接收Client处发送过来的请求,而IPCThreadState又借助了ProcessState类来与Binder驱动程序交互。有关IPCThreadState和ProcessState的关系,可以参考上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路,接下来也会有相应的描述。IPCThreadState接收到了Client处的请求后,就会调用BBinder类的transact函数,并传入相关参数,BBinder类的transact函数最终调用BnMediaPlayerService类的onTransact函数,于是,就开始真正地处理Client的请求了。了解了MediaPlayerService类结构之后,就要开始进入到本文的主题了。首先,看看MediaPlayerService是如何启动的。启动MediaPlayerService的代码位于frameworks/base/media/mediaserver/main_mediaserver.cpp文件中:int main(int argc, char** argv){    sp proc(ProcessState::self());    sp sm = defaultServiceManager();    LOGI("ServiceManager: %p", sm.get());    AudioFlinger::instantiate();    MediaPlayerService::instantiate();    CameraService::instantiate();    AudioPolicyService::instantiate();    ProcessState::self()->startThreadPool();    IPCThreadState::self()->joinThreadPool();}这里我们不关注AudioFlinger和CameraService相关的代码。先看下面这句代码:



sp proc(ProcessState::self());这句代码的作用是通过ProcessState::self()调用创建一个ProcessState实例。ProcessState::self()是ProcessState类的一个静态成员变量,定义在frameworks/base/libs/binder/ProcessState.cpp文件中:sp ProcessState::self()    {        if (gProcess != NULL) return gProcess;           AutoMutex _l(gProcessMutex);        if (gProcess == NULL) gProcess = new ProcessState;        return gProcess;    }这里可以看出,这个函数作用是返回一个全局唯一的ProcessState实例gProcess。全局唯一实例变量gProcess定义在frameworks/base/libs/binder/Static.cpp文件中:  Mutex gProcessMutex;    sp gProcess;再来看ProcessState的构造函数: ProcessState::ProcessState()        : mDriverFD(open_driver())        , mVMStart(MAP_FAILED)        , mManagesContexts(false)        , mBinderContextCheckFunc(NULL)        , mBinderContextUserData(NULL)        , mThreadPoolStarted(false)        , mThreadPoolSeq(1)    {        if (mDriverFD >= 0) {            // XXX Ideally, there should be a specific define for whether we            // have mmap (or whether we could possibly have the kernel module            // availabla).    #if !defined(HAVE_WIN32_IPC)            // mmap the binder, providing a chunk of virtual address space to receive transactions.            mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);            if (mVMStart == MAP_FAILED) {                // *sigh*                LOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");                close(mDriverFD);                mDriverFD = -1;            }    #else            mDriverFD = -1;    #endif        }        if (mDriverFD < 0) {            // Need to run without the driver, starting our own thread pool.        }    }这个函数有两个关键地方,一是通过open_driver函数打开Binder设备文件/dev/binder,并将打开设备文件描述符保存在成员变量mDriverFD中;二是通过mmap来把设备文件/dev/binder映射到内存中。先看open_driver函数的实现,这个函数同样位于frameworks/base/libs/binder/ProcessState.cpp文件中:static int open_driver()    {        if (gSingleProcess) {            return -1;        }           int fd = open("/dev/binder", O_RDWR);        if (fd >= 0) {            fcntl(fd, F_SETFD, FD_CLOEXEC);            int vers;    #if defined(HAVE_ANDROID_OS)            status_t result = ioctl(fd, BINDER_VERSION, &vers);    #else            status_t result = -1;            errno = EPERM;    #endif            if (result == -1) {                LOGE("Binder ioctl to obtain version failed: %s", strerror(errno));                close(fd);                fd = -1;            }            if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {                LOGE("Binder driver protocol does not match user space protocol!");                close(fd);                fd = -1;            }    #if defined(HAVE_ANDROID_OS)            size_t maxThreads = 15;            result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);            if (result == -1) {                LOGE("Binder ioctl to set max threads failed: %s", strerror(errno));            }    #endif           } else {            LOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));        }        return fd;    }这个函数的作用主要是通过open文件操作函数来打开/dev/binder设备文件,然后再调用ioctl文件控制函数来分别执行BINDER_VERSION和BINDER_SET_MAX_THREADS两个命令来和Binder驱动程序进行交互,前者用于获得当前Binder驱动程序的版本号,后者用于通知Binder驱动程序,MediaPlayerService最多可同时启动15个线程来处理Client端的请求。open在Binder驱动程序中的具体实现,请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,这里不再重复描述。打开/dev/binder设备文件后,Binder驱动程序就为MediaPlayerService进程创建了一个struct binder_proc结构体实例来维护MediaPlayerService进程上下文相关信息。我们来看一下ioctl文件操作函数执行BINDER_VERSION命令的过程:status_t result = ioctl(fd, BINDER_VERSION, &vers);这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_VERSION相关的部分逻辑:static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)    {        int ret;        struct binder_proc *proc = filp->private_data;        struct binder_thread *thread;        unsigned int size = _IOC_SIZE(cmd);        void __user *ubuf = (void __user *)arg;           /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/           ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);        if (ret)            return ret;           mutex_lock(&binder_lock);        thread = binder_get_thread(proc);        if (thread == NULL) {            ret = -ENOMEM;            goto err;        }           switch (cmd) {        ......        case BINDER_VERSION:            if (size != sizeof(struct binder_version)) {                ret = -EINVAL;                goto err;            }            if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &((struct binder_version *)ubuf)->protocol_version)) {                ret = -EINVAL;                goto err;            }            break;        ......        }        ret = 0;    err:            ......        return ret;    }很简单,只是将BINDER_CURRENT_PROTOCOL_VERSION写入到传入的参数arg指向的用户缓冲区中去就返回了。BINDER_CURRENT_PROTOCOL_VERSION是一个宏,定义在kernel/common/drivers/staging/android/binder.h文件中: /* This is the current protocol version. */    #define BINDER_CURRENT_PROTOCOL_VERSION 7这里为什么要把ubuf转换成struct binder_version之后,再通过其protocol_version成员变量再来写入呢,转了一圈,最终内容还是写入到ubuf中。我们看一下struct binder_version的定义就会明白,同样是在kernel/common/drivers/staging/android/binder.h文件中: /* Use with BINDER_VERSION, driver fills in fields. */    struct binder_version {        /* driver protocol version -- increment with incompatible change */        signed long protocol_version;    };从注释中可以看出来,这里是考虑到兼容性,因为以后很有可能不是用signed long来表示版本号。这里有一个重要的地方要注意的是,由于这里是打开设备文件/dev/binder之后,第一次进入到binder_ioctl函数,因此,这里调用binder_get_thread的时候,就会为当前线程创建一个struct binder_thread结构体变量来维护线程上下文信息,具体可以参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。接着我们再来看一下ioctl文件操作函数执行BINDER_SET_MAX_THREADS命令的过程:result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_SET_MAX_THREADS相关的部分逻辑:static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)    {        int ret;        struct binder_proc *proc = filp->private_data;        struct binder_thread *thread;        unsigned int size = _IOC_SIZE(cmd);        void __user *ubuf = (void __user *)arg;           /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/           ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);        if (ret)            return ret;           mutex_lock(&binder_lock);        thread = binder_get_thread(proc);        if (thread == NULL) {            ret = -ENOMEM;            goto err;        }           switch (cmd) {        ......        case BINDER_SET_MAX_THREADS:            if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) {                ret = -EINVAL;                goto err;            }            break;        ......        }        ret = 0;    err:        ......        return ret;    }这里实现也是非常简单,只是简单地把用户传进来的参数保存在proc->max_threads中就完毕了。注意,这里再调用binder_get_thread函数的时候,就可以在proc->threads中找到当前线程对应的struct binder_thread结构了,因为前面已经创建好并保存在proc->threads红黑树中。回到ProcessState的构造函数中,这里还通过mmap函数来把设备文件/dev/binder映射到内存中,这个函数在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文也已经有详细介绍,这里不再重复描述。宏BINDER_VM_SIZE就定义在ProcessState.cpp文件中:  #define BINDER_VM_SIZE ((1*1024*1024) - (4096 *2))mmap函数调用完成之后,Binder驱动程序就为当前进程预留了BINDER_VM_SIZE大小的内存空间了。这样,ProcessState全局唯一变量gProcess就创建完毕了,回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,下一步是调用defaultServiceManager函数来获得Service Manager的远程接口,这个已经在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路有详细描述,读者可以回过头去参考一下。再接下来,就进入到MediaPlayerService::instantiate函数把MediaPlayerService添加到Service Manger中去了。这个函数定义在frameworks/base/media/libmediaplayerservice/MediaPlayerService.cpp文件中:void MediaPlayerService::instantiate() {    defaultServiceManager()->addService(            String16("media.player"), new MediaPlayerService());}我们重点看一下IServiceManger::addService的过程,这有助于我们加深对Binder机制的理解。在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中说到,defaultServiceManager返回的实际是一个BpServiceManger类实例,因此,我们看一下BpServiceManger::addService的实现,这个函数实现在frameworks/base/libs/binder/IServiceManager.cpp文件中:class BpServiceManager : public BpInterface{public:BpServiceManager(const sp& impl): BpInterface(impl){} ...... virtual status_t addService(const String16& name, const sp& service){Parcel data, reply;data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());data.writeString16(name);data.writeStrongBinder(service);status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);return err == NO_ERROR ? reply.readExceptionCode()} ...... };这里的Parcel类是用来于序列化进程间通信数据用的。先来看这一句的调用:data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());IServiceManager::getInterfaceDescriptor()返回来的是一个字符串,即”android.os.IServiceManager”,具体可以参考IServiceManger的实现。我们看一下Parcel::writeInterfaceToken的实现,位于frameworks/base/libs/binder/Parcel.cpp文件中:// Write RPC headers.  (previously just the interface token)    status_t Parcel::writeInterfaceToken(const String16& interface)    {        writeInt32(IPCThreadState::self()->getStrictModePolicy() |                   STRICT_MODE_PENALTY_GATHER);        // currently the interface identification token is just its name as a string        return writeString16(interface);    }它的作用是写入一个整数和一个字符串到Parcel中去。再来看下面的调用:data.writeString16(name);这里又是写入一个字符串到Parcel中去,这里的name即是上面传进来的“media.player”字符串。往下看:data.writeStrongBinder(service);这里定入一个Binder对象到Parcel去。我们重点看一下这个函数的实现,因为它涉及到进程间传输Binder实体的问题,比较复杂,需要重点关注,同时,也是理解Binder机制的一个重点所在。注意,这里的service参数是一个MediaPlayerService对象。status_t Parcel::writeStrongBinder(const sp& val)    {        return flatten_binder(ProcessState::self(), val, this);    }看到flatten_binder函数,是不是似曾相识的感觉?我们在前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路中,曾经提到在Binder驱动程序中,使用struct flat_binder_object来表示传输中的一个binder对象,它的定义如下所示:/* * This is the flattened representation of a Binder object for transfer * between processes.  The 'offsets' supplied as part of a binder transaction * contains offsets into the data where these structures occur.  The Binder * driver takes care of re-writing the structure type and data as it moves * between processes. */struct flat_binder_object {/* 8 bytes for large_flat_header. */unsigned longtype;unsigned longflags; /* 8 bytes of data. */union {void*binder;/* local object */signed longhandle;/* remote object */}; /* extra data associated with local object */void*cookie;};各个成员变量的含义请参考资料Android Binder设计与实现(百度文库有)。我们进入到flatten_binder函数看看:  status_t flatten_binder(const sp& proc,        const sp& binder, Parcel* out)    {        flat_binder_object obj;           obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;        if (binder != NULL) {            IBinder *local = binder->localBinder();            if (!local) {                BpBinder *proxy = binder->remoteBinder();                if (proxy == NULL) {                    LOGE("null proxy");                }                const int32_t handle = proxy ? proxy->handle() : 0;                obj.type = BINDER_TYPE_HANDLE;                obj.handle = handle;                obj.cookie = NULL;            } else {                obj.type = BINDER_TYPE_BINDER;                obj.binder = local->getWeakRefs();                obj.cookie = local;            }        } else {            obj.type = BINDER_TYPE_BINDER;            obj.binder = NULL;            obj.cookie = NULL;        }           return finish_flatten_binder(binder, obj, out);    }首先是初始化flat_binder_object的flags域:obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;0x7f表示处理本Binder实体请求数据包的线程的最低优先级,FLAT_BINDER_FLAG_ACCEPTS_FDS表示这个Binder实体可以接受文件描述符,Binder实体在收到文件描述符时,就会在本进程中打开这个文件。传进来的binder即为MediaPlayerService::instantiate函数中new出来的MediaPlayerService实例,因此,不为空。又由于MediaPlayerService继承自BBinder类,它是一个本地Binder实体,因此binder->localBinder返回一个BBinder指针,而且肯定不为空,于是执行下面语句:obj.type = BINDER_TYPE_BINDER;    obj.binder = local->getWeakRefs();    obj.cookie = local;设置了flat_binder_obj的其他成员变量,注意,指向这个Binder实体地址的指针local保存在flat_binder_obj的成员变量cookie中。函数调用finish_flatten_binder来将这个flat_binder_obj写入到Parcel中去:inline static status_t finish_flatten_binder(        const sp& binder, const flat_binder_object& flat, Parcel* out)    {        return out->writeObject(flat, false);    }Parcel::writeObject的实现如下: status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)    {        const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;        const bool enoughObjects = mObjectsSize < mObjectsCapacity;        if (enoughData && enoughObjects) {    restart_write:            *reinterpret_cast(mData+mDataPos) = val;               // Need to write meta-data?            if (nullMetaData || val.binder != NULL) {                mObjects[mObjectsSize] = mDataPos;                acquire_object(ProcessState::self(), val, this);                mObjectsSize++;            }               // remember if it's a file descriptor            if (val.type == BINDER_TYPE_FD) {                mHasFds = mFdsKnown = true;            }               return finishWrite(sizeof(flat_binder_object));        }           if (!enoughData) {            const status_t err = growData(sizeof(val));            if (err != NO_ERROR) return err;        }        if (!enoughObjects) {            size_t newSize = ((mObjectsSize+2)*3)/2;            size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t));            if (objects == NULL) return NO_MEMORY;            mObjects = objects;            mObjectsCapacity = newSize;        }           goto restart_write;    }这里除了把flat_binder_obj写到Parcel里面之内,还要记录这个flat_binder_obj在Parcel里面的偏移位置:mObjects[mObjectsSize] = mDataPos;这里因为,如果进程间传输的数据间带有Binder对象的时候,Binder驱动程序需要作进一步的处理,以维护各个Binder实体的一致性,下面我们将会看到Binder驱动程序是怎么处理这些Binder对象的。再回到BpServiceManager::addService函数中,调用下面语句:status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);回到浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文中的类图中去看一下,这里的remote成员函数来自于BpRefBase类,它返回一个BpBinder指针。因此,我们继续进入到BpBinder::transact函数中去看看: status_t BpBinder::transact(        uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)    {        // Once a binder has died, it will never come back to life.        if (mAlive) {            status_t status = IPCThreadState::self()->transact(                mHandle, code, data, reply, flags);            if (status == DEAD_OBJECT) mAlive = 0;            return status;        }           return DEAD_OBJECT;    }这里又调用了IPCThreadState::transact进执行实际的操作。注意,这里的mHandle为0,code为ADD_SERVICE_TRANSACTION。ADD_SERVICE_TRANSACTION是上面以参数形式传进来的,那mHandle为什么是0呢?因为这里表示的是Service Manager远程接口,它的句柄值一定是0,具体请参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。再进入到IPCThreadState::transact函数,看看做了些什么事情: status_t IPCThreadState::transact(int32_t handle,                                      uint32_t code, const Parcel& data,                                      Parcel* reply, uint32_t flags)    {        status_t err = data.errorCheck();           flags |= TF_ACCEPT_FDS;           IF_LOG_TRANSACTIONS() {            TextOutput::Bundle _b(alog);            alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "                << handle << " / code " << TypeCode(code) << ": "                << indent << data << dedent << endl;        }           if (err == NO_ERROR) {            LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),                (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");            err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);        }           if (err != NO_ERROR) {            if (reply) reply->setError(err);            return (mLastError = err);        }           if ((flags & TF_ONE_WAY) == 0) {            #if 0            if (code == 4) { // relayout                LOGI(">>>>>> CALLING transaction 4");            } else {                LOGI(">>>>>> CALLING transaction %d", code);            }            #endif            if (reply) {                err = waitForResponse(reply);            } else {                Parcel fakeReply;                err = waitForResponse(&fakeReply);            }            #if 0            if (code == 4) { // relayout                LOGI("<<<<<< RETURNING transaction 4");            } else {                LOGI("<<<<<< RETURNING transaction %d", code);            }            #endif               IF_LOG_TRANSACTIONS() {                TextOutput::Bundle _b(alog);                alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "                    << handle << ": ";                if (reply) alog << indent << *reply << dedent << endl;                else alog << "(none requested)" << endl;            }        } else {            err = waitForResponse(NULL, NULL);        }           return err;    }IPCThreadState::transact函数的参数flags是一个默认值为0的参数,上面没有传相应的实参进来,因此,这里就为0。函数首先调用writeTransactionData函数准备好一个struct binder_transaction_data结构体变量,这个是等一下要传输给Binder驱动程序的。struct binder_transaction_data的定义我们在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文中有详细描述,读者不妨回过去读一下。这里为了方便描述,将struct binder_transaction_data的定义再次列出来: struct binder_transaction_data {        /* The first two are only used for bcTRANSACTION and brTRANSACTION,         * identifying the target and contents of the transaction.         */        union {            size_t  handle; /* target descriptor of command transaction */            void    *ptr;   /* target descriptor of return transaction */        } target;        void        *cookie;    /* target object cookie */        unsigned int    code;       /* transaction command */           /* General information about the transaction. */        unsigned int    flags;        pid_t       sender_pid;        uid_t       sender_euid;        size_t      data_size;  /* number of bytes of data */        size_t      offsets_size;   /* number of bytes of offsets */           /* If this transaction is inline, the data immediately         * follows here; otherwise, it ends with a pointer to         * the data buffer.         */        union {            struct {                /* transaction data */                const void  *buffer;                /* offsets from buffer to flat_binder_object structs */                const void  *offsets;            } ptr;            uint8_t buf[8];        } data;    };writeTransactionData函数的实现如下:status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,    int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer){    binder_transaction_data tr;     tr.target.handle = handle;    tr.code = code;    tr.flags = binderFlags;     const status_t err = data.errorCheck();    if (err == NO_ERROR) {        tr.data_size = data.ipcDataSize();        tr.data.ptr.buffer = data.ipcData();        tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);        tr.data.ptr.offsets = data.ipcObjects();    } else if (statusBuffer) {        tr.flags |= TF_STATUS_CODE;        *statusBuffer = err;        tr.data_size = sizeof(status_t);        tr.data.ptr.buffer = statusBuffer;        tr.offsets_size = 0;        tr.data.ptr.offsets = NULL;    } else {        return (mLastError = err);    }     mOut.writeInt32(cmd);    mOut.write(&tr, sizeof(tr));     return NO_ERROR;}注意,这里的cmd为BC_TRANSACTION。 这个函数很简单,在这个场景下,就是执行下面语句来初始化本地变量tr:    tr.data_size = data.ipcDataSize();    tr.data.ptr.buffer = data.ipcData();    tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);    tr.data.ptr.offsets = data.ipcObjects();回忆一下上面的内容,写入到tr.data.ptr.buffer的内容相当于下面的内容:writeInt32(IPCThreadState::self()->getStrictModePolicy() |               STRICT_MODE_PENALTY_GATHER);writeString16("android.os.IServiceManager");writeString16("media.player");writeStrongBinder(new MediaPlayerService());其中包含了一个Binder实体MediaPlayerService,因此需要设置tr.offsets_size就为1,tr.data.ptr.offsets就指向了这个MediaPlayerService的地址在tr.data.ptr.buffer中的偏移量。最后,将tr的内容保存在IPCThreadState的成员变量mOut中。回到IPCThreadState::transact函数中,接下去看,(flags & TF_ONE_WAY) == 0为true,并且reply不为空,所以最终进入到waitForResponse(reply)这条路径来。我们看一下waitForResponse函数的实现:status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult){    int32_t cmd;    int32_t err;     while (1) {        if ((err=talkWithDriver()) < NO_ERROR) break;        err = mIn.errorCheck();        if (err < NO_ERROR) break;        if (mIn.dataAvail() == 0) continue;         cmd = mIn.readInt32();         IF_LOG_COMMANDS() {            alog << "Processing waitForResponse Command: "                << getReturnString(cmd) << endl;        }         switch (cmd) {        case BR_TRANSACTION_COMPLETE:            if (!reply && !acquireResult) goto finish;            break;         case BR_DEAD_REPLY:            err = DEAD_OBJECT;            goto finish;         case BR_FAILED_REPLY:            err = FAILED_TRANSACTION;            goto finish;         case BR_ACQUIRE_RESULT:            {                LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");                const int32_t result = mIn.readInt32();                if (!acquireResult) continue;                *acquireResult = result ? NO_ERROR : INVALID_OPERATION;            }            goto finish;         case BR_REPLY:            {                binder_transaction_data tr;                err = mIn.read(&tr, sizeof(tr));                LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");                if (err != NO_ERROR) goto finish;                 if (reply) {                    if ((tr.flags & TF_STATUS_CODE) == 0) {                        reply->ipcSetDataReference(                            reinterpret_cast(tr.data.ptr.buffer),                            tr.data_size,                            reinterpret_cast(tr.data.ptr.offsets),                            tr.offsets_size/sizeof(size_t),                            freeBuffer, this);                    } else {                        err = *static_cast(tr.data.ptr.buffer);                        freeBuffer(NULL,                            reinterpret_cast(tr.data.ptr.buffer),                            tr.data_size,                            reinterpret_cast(tr.data.ptr.offsets),                            tr.offsets_size/sizeof(size_t), this);                    }                } else {                    freeBuffer(NULL,                        reinterpret_cast(tr.data.ptr.buffer),                        tr.data_size,                        reinterpret_cast(tr.data.ptr.offsets),                        tr.offsets_size/sizeof(size_t), this);                    continue;                }            }            goto finish;         default:            err = executeCommand(cmd);            if (err != NO_ERROR) goto finish;            break;        }    } finish:    if (err != NO_ERROR) {        if (acquireResult) *acquireResult = err;        if (reply) reply->setError(err);        mLastError = err;    }     return err;}这个函数虽然很长,但是主要调用了talkWithDriver函数来与Binder驱动程序进行交互:status_t IPCThreadState::talkWithDriver(bool doReceive){    LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened");     binder_write_read bwr;     // Is the read buffer empty?    const bool needRead = mIn.dataPosition() >= mIn.dataSize();     // We don't want to write anything if we are still reading    // from data left in the input buffer and the caller    // has requested to read the next data.    const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;     bwr.write_size = outAvail;    bwr.write_buffer = (long unsigned int)mOut.data();     // This is what we'll read.    if (doReceive && needRead) {        bwr.read_size = mIn.dataCapacity();        bwr.read_buffer = (long unsigned int)mIn.data();    } else {        bwr.read_size = 0;    }     IF_LOG_COMMANDS() {        TextOutput::Bundle _b(alog);        if (outAvail != 0) {            alog << "Sending commands to driver: " << indent;            const void* cmds = (const void*)bwr.write_buffer;            const void* end = ((const uint8_t*)cmds)+bwr.write_size;            alog << HexDump(cmds, bwr.write_size) << endl;            while (cmds < end) cmds = printCommand(alog, cmds);            alog << dedent;        }        alog << "Size of receive buffer: " << bwr.read_size            << ", needRead: " << needRead << ", doReceive: " << doReceive << endl;    }     // Return immediately if there is nothing to do.    if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;     bwr.write_consumed = 0;    bwr.read_consumed = 0;    status_t err;    do {        IF_LOG_COMMANDS() {            alog << "About to read/write, write size = " << mOut.dataSize() << endl;        }#if defined(HAVE_ANDROID_OS)        if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)            err = NO_ERROR;        else            err = -errno;#else        err = INVALID_OPERATION;#endif        IF_LOG_COMMANDS() {            alog << "Finished read/write, write size = " << mOut.dataSize() << endl;        }    } while (err == -EINTR);     IF_LOG_COMMANDS() {        alog << "Our err: " << (void*)err << ", write consumed: "            << bwr.write_consumed << " (of " << mOut.dataSize()<< "), read consumed: " << bwr.read_consumed << endl;    }     if (err >= NO_ERROR) {        if (bwr.write_consumed > 0) {            if (bwr.write_consumed < (ssize_t)mOut.dataSize())                mOut.remove(0, bwr.write_consumed);            else                mOut.setDataSize(0);        }        if (bwr.read_consumed > 0) {            mIn.setDataSize(bwr.read_consumed);            mIn.setDataPosition(0);        }        IF_LOG_COMMANDS() {            TextOutput::Bundle _b(alog);            alog << "Remaining data size: " << mOut.dataSize() << endl;            alog << "Received commands from driver: " << indent;            const void* cmds = mIn.data();            const void* end = mIn.data() + mIn.dataSize();            alog << HexDump(cmds, mIn.dataSize()) << endl;            while (cmds < end) cmds = printReturnCommand(alog, cmds);            alog << dedent;        }        return NO_ERROR;    }     return err;}这里doReceive和needRead均为1,有兴趣的读者可以自已分析一下。因此,这里告诉Binder驱动程序,先执行write操作,再执行read操作,下面我们将会看到最后,通过ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)进行到Binder驱动程序的binder_ioctl函数,我们只关注cmd为BINDER_WRITE_READ的逻辑: static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)    {        int ret;        struct binder_proc *proc = filp->private_data;        struct binder_thread *thread;        unsigned int size = _IOC_SIZE(cmd);        void __user *ubuf = (void __user *)arg;           /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/           ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);        if (ret)            return ret;           mutex_lock(&binder_lock);        thread = binder_get_thread(proc);        if (thread == NULL) {            ret = -ENOMEM;            goto err;        }           switch (cmd) {        case BINDER_WRITE_READ: {            struct binder_write_read bwr;            if (size != sizeof(struct binder_write_read)) {                ret = -EINVAL;                goto err;            }            if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {                ret = -EFAULT;                goto err;            }            if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)                printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n",                proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer);            if (bwr.write_size > 0) {                ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);                if (ret < 0) {                    bwr.read_consumed = 0;                    if (copy_to_user(ubuf, &bwr, sizeof(bwr)))                        ret = -EFAULT;                    goto err;                }            }            if (bwr.read_size > 0) {                ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);                if (!list_empty(&proc->todo))                    wake_up_interruptible(&proc->wait);                if (ret < 0) {                    if (copy_to_user(ubuf, &bwr, sizeof(bwr)))                        ret = -EFAULT;                    goto err;                }            }            if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)                printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n",                proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size);            if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {                ret = -EFAULT;                goto err;            }            break;        }        ......        }        ret = 0;    err:        ......        return ret;    }函数首先是将用户传进来的参数拷贝到本地变量struct binder_write_read bwr中去。这里bwr.write_size > 0为true,因此,进入到binder_thread_write函数中,我们只关注BC_TRANSACTION部分的逻辑:binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,void __user *buffer, int size, signed long *consumed){uint32_t cmd;void __user *ptr = buffer + *consumed;void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) {if (get_user(cmd, (uint32_t __user *)ptr))return -EFAULT;ptr += sizeof(uint32_t);if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {binder_stats.bc[_IOC_NR(cmd)]++;proc->stats.bc[_IOC_NR(cmd)]++;thread->stats.bc[_IOC_NR(cmd)]++;}switch (cmd) {        .....case BC_TRANSACTION:case BC_REPLY: {struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr)))return -EFAULT;ptr += sizeof(tr);binder_transaction(proc, thread, &tr, cmd == BC_REPLY);break;}......}*consumed = ptr - buffer;}return 0;}首先将用户传进来的transact参数拷贝在本地变量struct binder_transaction_data tr中去,接着调用binder_transaction函数进一步处理,这里我们忽略掉无关代码:static voidbinder_transaction(struct binder_proc *proc, struct binder_thread *thread,struct binder_transaction_data *tr, int reply){struct binder_transaction *t;struct binder_work *tcomplete;size_t *offp, *off_end;struct binder_proc *target_proc;struct binder_thread *target_thread = NULL;struct binder_node *target_node = NULL;struct list_head *target_list;wait_queue_head_t *target_wait;struct binder_transaction *in_reply_to = NULL;struct binder_transaction_log_entry *e;uint32_t return_error;         ...... if (reply) {         ......} else {if (tr->target.handle) {            ......} else {target_node = binder_context_mgr_node;if (target_node == NULL) {return_error = BR_DEAD_REPLY;goto err_no_context_mgr_node;}}......target_proc = target_node->proc;if (target_proc == NULL) {return_error = BR_DEAD_REPLY;goto err_dead_binder;}......}if (target_thread) {......} else {target_list = &target_proc->todo;target_wait = &target_proc->wait;} ...... /* TODO: reuse incoming transaction for reply */t = kzalloc(sizeof(*t), GFP_KERNEL);if (t == NULL) {return_error = BR_FAILED_REPLY;goto err_alloc_t_failed;}...... tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);if (tcomplete == NULL) {return_error = BR_FAILED_REPLY;goto err_alloc_tcomplete_failed;} ...... if (!reply && !(tr->flags & TF_ONE_WAY))t->from = thread;elset->from = NULL;t->sender_euid = proc->tsk->cred->euid;t->to_proc = target_proc;t->to_thread = target_thread;t->code = tr->code;t->flags = tr->flags;t->priority = task_nice(current);t->buffer = binder_alloc_buf(target_proc, tr->data_size,tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));if (t->buffer == NULL) {return_error = BR_FAILED_REPLY;goto err_binder_alloc_buf_failed;}t->buffer->allow_user_free = 0;t->buffer->debug_id = t->debug_id;t->buffer->transaction = t;t->buffer->target_node = target_node;if (target_node)binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {......return_error = BR_FAILED_REPLY;goto err_copy_data_failed;}if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {......return_error = BR_FAILED_REPLY;goto err_copy_data_failed;}...... off_end = (void *)offp + tr->offsets_size;for (; offp < off_end; offp++) {struct flat_binder_object *fp;......fp = (struct flat_binder_object *)(t->buffer->data + *offp);switch (fp->type) {case BINDER_TYPE_BINDER:case BINDER_TYPE_WEAK_BINDER: {struct binder_ref *ref;struct binder_node *node = binder_get_node(proc, fp->binder);if (node == NULL) {node = binder_new_node(proc, fp->binder, fp->cookie);if (node == NULL) {return_error = BR_FAILED_REPLY;goto err_binder_new_node_failed;}node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);}if (fp->cookie != node->cookie) {......goto err_binder_get_ref_for_node_failed;}ref = binder_get_ref_for_node(target_proc, node);if (ref == NULL) {return_error = BR_FAILED_REPLY;goto err_binder_get_ref_for_node_failed;}if (fp->type == BINDER_TYPE_BINDER)fp->type = BINDER_TYPE_HANDLE;elsefp->type = BINDER_TYPE_WEAK_HANDLE;fp->handle = ref->desc;binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo);...... } break;......}} if (reply) {......} else if (!(t->flags & TF_ONE_WAY)) {BUG_ON(t->buffer->async_transaction != 0);t->need_reply = 1;t->from_parent = thread->transaction_stack;thread->transaction_stack = t;} else {......}t->work.type = BINDER_WORK_TRANSACTION;list_add_tail(&t->work.entry, target_list);tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;list_add_tail(&tcomplete->entry, &thread->todo);if (target_wait)wake_up_interruptible(target_wait);return;    ......}注意,这里传进来的参数reply为0,tr->target.handle也为0。因此,target_proc、target_thread、target_node、target_list和target_wait的值分别为:    target_node = binder_context_mgr_node;    target_proc = target_node->proc;    target_list = &target_proc->todo;    target_wait = &target_proc->wait;接着,分配了一个待处理事务t和一个待完成工作项tcomplete,并执行初始化工作: /* TODO: reuse incoming transaction for reply */    t = kzalloc(sizeof(*t), GFP_KERNEL);    if (t == NULL) {        return_error = BR_FAILED_REPLY;        goto err_alloc_t_failed;    }    ......       tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);    if (tcomplete == NULL) {        return_error = BR_FAILED_REPLY;        goto err_alloc_tcomplete_failed;    }       ......       if (!reply && !(tr->flags & TF_ONE_WAY))        t->from = thread;    else        t->from = NULL;    t->sender_euid = proc->tsk->cred->euid;    t->to_proc = target_proc;    t->to_thread = target_thread;    t->code = tr->code;    t->flags = tr->flags;    t->priority = task_nice(current);    t->buffer = binder_alloc_buf(target_proc, tr->data_size,        tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));    if (t->buffer == NULL) {        return_error = BR_FAILED_REPLY;        goto err_binder_alloc_buf_failed;    }    t->buffer->allow_user_free = 0;    t->buffer->debug_id = t->debug_id;    t->buffer->transaction = t;    t->buffer->target_node = target_node;    if (target_node)        binder_inc_node(target_node, 1, 0, NULL);       offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));       if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {        ......        return_error = BR_FAILED_REPLY;        goto err_copy_data_failed;    }    if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {        ......        return_error = BR_FAILED_REPLY;        goto err_copy_data_failed;    }注意,这里的事务t是要交给target_proc处理的,在这个场景之下,就是Service Manager了。因此,下面的语句:t->buffer = binder_alloc_buf(target_proc, tr->data_size,            tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));就是在Service Manager的进程空间中分配一块内存来保存用户传进入的参数了: if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {        ......        return_error = BR_FAILED_REPLY;        goto err_copy_data_failed;    }    if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {        ......        return_error = BR_FAILED_REPLY;        goto err_copy_data_failed;    }由于现在target_node要被使用了,增加它的引用计数:if (target_node)        binder_inc_node(target_node, 1, 0, NULL);接下去的for循环,就是用来处理传输数据中的Binder对象了。在我们的场景中,有一个类型为BINDER_TYPE_BINDER的Binder实体MediaPlayerService:switch (fp->type) {   case BINDER_TYPE_BINDER:   case BINDER_TYPE_WEAK_BINDER: {struct binder_ref *ref;struct binder_node *node = binder_get_node(proc, fp->binder);if (node == NULL) {    node = binder_new_node(proc, fp->binder, fp->cookie);    if (node == NULL) {        return_error = BR_FAILED_REPLY;        goto err_binder_new_node_failed;    }    node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;    node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);}if (fp->cookie != node->cookie) {    ......    goto err_binder_get_ref_for_node_failed;}ref = binder_get_ref_for_node(target_proc, node);if (ref == NULL) {    return_error = BR_FAILED_REPLY;    goto err_binder_get_ref_for_node_failed;}if (fp->type == BINDER_TYPE_BINDER)    fp->type = BINDER_TYPE_HANDLE;else    fp->type = BINDER_TYPE_WEAK_HANDLE;fp->handle = ref->desc;binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo);......   } break;由于是第一次在Binder驱动程序中传输这个MediaPlayerService,调用binder_get_node函数查询这个Binder实体时,会返回空,于是binder_new_node在proc中新建一个,下次就可以直接使用了。现在,由于要把这个Binder实体MediaPlayerService交给target_proc,也就是Service Manager来管理,也就是说Service Manager要引用这个MediaPlayerService了,于是通过binder_get_ref_for_node为MediaPlayerService创建一个引用,并且通过binder_inc_ref来增加这个引用计数,防止这个引用还在使用过程当中就被销毁。注意,到了这里的时候,t->buffer中的flat_binder_obj的type已经改为BINDER_TYPE_HANDLE,handle已经改为ref->desc,跟原来不一样了,因为这个flat_binder_obj是最终是要传给Service Manager的,而Service Manager只能够通过句柄值来引用这个Binder实体。最后,把待处理事务加入到target_list列表中去:list_add_tail(&t->work.entry, target_list);并且把待完成工作项加入到本线程的todo等待执行列表中去:list_add_tail(&tcomplete->entry, &thread->todo);现在目标进程有事情可做了,于是唤醒它: if (target_wait)        wake_up_interruptible(target_wait);这里就是要唤醒Service Manager进程了。回忆一下前面浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路这篇文章,此时, Service Manager正在binder_thread_read函数中调用wait_event_interruptible进入休眠状态。这里我们先忽略一下Service Manager被唤醒之后的场景,继续MedaPlayerService的启动过程,然后再回来。回到binder_ioctl函数,bwr.read_size > 0为true,于是进入binder_thread_read函数: static int    binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,                       void  __user *buffer, int size, signed long *consumed, int non_block)    {        void __user *ptr = buffer + *consumed;        void __user *end = buffer + size;           int ret = 0;        int wait_for_proc_work;           if (*consumed == 0) {            if (put_user(BR_NOOP, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);        }       retry:        wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);           .......           if (wait_for_proc_work) {            .......        } else {            if (non_block) {                if (!binder_has_thread_work(thread))                    ret = -EAGAIN;            } else                ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));        }           ......           while (1) {            uint32_t cmd;            struct binder_transaction_data tr;            struct binder_work *w;            struct binder_transaction *t = NULL;               if (!list_empty(&thread->todo))                w = list_first_entry(&thread->todo, struct binder_work, entry);            else if (!list_empty(&proc->todo) && wait_for_proc_work)                w = list_first_entry(&proc->todo, struct binder_work, entry);            else {                if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */                    goto retry;                break;            }               if (end - ptr < sizeof(tr) + 4)                break;               switch (w->type) {            ......            case BINDER_WORK_TRANSACTION_COMPLETE: {                cmd = BR_TRANSACTION_COMPLETE;                if (put_user(cmd, (uint32_t __user *)ptr))                    return -EFAULT;                ptr += sizeof(uint32_t);                   binder_stat_br(proc, thread, cmd);                if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE)                    printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n",                    proc->pid, thread->pid);                   list_del(&w->entry);                kfree(w);                binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++;                                                   } break;            ......            }               if (!t)                continue;               ......        }       done:        ......        return 0;    }这里,thread->transaction_stack和thread->todo均不为空,于是wait_for_proc_work为false,由于binder_has_thread_work的时候,返回true,这里因为thread->todo不为空,因此,线程虽然调用了wait_event_interruptible,但是不会睡眠,于是继续往下执行。由于thread->todo不为空,执行下列语句: if (!list_empty(&thread->todo))         w = list_first_entry(&thread->todo, struct binder_work, entry);w->type为BINDER_WORK_TRANSACTION_COMPLETE,这是在上面的binder_transaction函数设置的,于是执行:switch (w->type) {   ......   case BINDER_WORK_TRANSACTION_COMPLETE: {cmd = BR_TRANSACTION_COMPLETE;if (put_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;ptr += sizeof(uint32_t);          ......list_del(&w->entry);kfree(w);   } break;......   }这里就将w从thread->todo删除了。由于这里t为空,重新执行while循环,这时由于已经没有事情可做了,最后就返回到binder_ioctl函数中。注间,这里一共往用户传进来的缓冲区buffer写入了两个整数,分别是BR_NOOP和BR_TRANSACTION_COMPLETE。binder_ioctl函数返回到用户空间之前,把数据消耗情况拷贝回用户空间中: if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {        ret = -EFAULT;        goto err;    }最后返回到IPCThreadState::talkWithDriver函数中,执行下面语句:if (err >= NO_ERROR) {        if (bwr.write_consumed > 0) {            if (bwr.write_consumed < (ssize_t)mOut.dataSize())                mOut.remove(0, bwr.write_consumed);            else                mOut.setDataSize(0);        }        if (bwr.read_consumed > 0) {<pre>            mIn.setDataSize(bwr.read_consumed);            mIn.setDataPosition(0);} ...... return NO_ERROR; }首先是把mOut的数据清空:mOut.setDataSize(0);然后设置已经读取的内容的大小: mIn.setDataSize(bwr.read_consumed);    mIn.setDataPosition(0);然后返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,先是从mIn读出一个整数,这个便是BR_NOOP了,这是一个空操作,什么也不做。然后继续进入IPCThreadState::talkWithDriver函数中。这时候,下面语句执行后: const bool needRead = mIn.dataPosition() >= mIn.dataSize();needRead为false,因为在mIn中,尚有一个整数BR_TRANSACTION_COMPLETE未读出。这时候,下面语句执行后:const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;outAvail等于0。因此,最后bwr.write_size和bwr.read_size均为0,IPCThreadState::talkWithDriver函数什么也不做,直接返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,又继续从mIn读出一个整数,这个便是BR_TRANSACTION_COMPLETE:switch (cmd) {    case BR_TRANSACTION_COMPLETE:           if (!reply && !acquireResult) goto finish;           break;    ......    }reply不为NULL,因此,IPCThreadState::waitForResponse的循环没有结束,继续执行,又进入到IPCThreadState::talkWithDrive中。这次,needRead就为true了,而outAvail仍为0,所以bwr.read_size不为0,bwr.write_size为0。于是通过:ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)进入到Binder驱动程序中的binder_ioctl函数中。由于bwr.write_size为0,bwr.read_size不为0,这次直接就进入到binder_thread_read函数中。这时候,thread->transaction_stack不等于0,但是thread->todo为空,于是线程就通过:  wait_event_interruptible(thread->wait, binder_has_thread_work(thread));进入睡眠状态,等待Service Manager来唤醒了。现在,我们可以回到Service Manager被唤醒的过程了。我们接着前面浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路这篇文章的最后,继续描述。此时, Service Manager正在binder_thread_read函数中调用wait_event_interruptible_exclusive进入休眠状态。上面被MediaPlayerService启动后进程唤醒后,继续执行binder_thread_read函数: static int    binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,                       void  __user *buffer, int size, signed long *consumed, int non_block)    {        void __user *ptr = buffer + *consumed;        void __user *end = buffer + size;           int ret = 0;        int wait_for_proc_work;           if (*consumed == 0) {            if (put_user(BR_NOOP, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);        }       retry:        wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);           ......           if (wait_for_proc_work) {            ......            if (non_block) {                if (!binder_has_proc_work(proc, thread))                    ret = -EAGAIN;            } else                ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));        } else {            ......        }           ......           while (1) {            uint32_t cmd;            struct binder_transaction_data tr;            struct binder_work *w;            struct binder_transaction *t = NULL;               if (!list_empty(&thread->todo))                w = list_first_entry(&thread->todo, struct binder_work, entry);            else if (!list_empty(&proc->todo) && wait_for_proc_work)                w = list_first_entry(&proc->todo, struct binder_work, entry);            else {                if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */                    goto retry;                break;            }               if (end - ptr < sizeof(tr) + 4)                break;               switch (w->type) {            case BINDER_WORK_TRANSACTION: {                t = container_of(w, struct binder_transaction, work);                                          } break;            ......            }               if (!t)                continue;               BUG_ON(t->buffer == NULL);            if (t->buffer->target_node) {                struct binder_node *target_node = t->buffer->target_node;                tr.target.ptr = target_node->ptr;                tr.cookie =  target_node->cookie;                ......                cmd = BR_TRANSACTION;            } else {                ......            }            tr.code = t->code;            tr.flags = t->flags;            tr.sender_euid = t->sender_euid;               if (t->from) {                struct task_struct *sender = t->from->proc->tsk;                tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);            } else {                tr.sender_pid = 0;            }               tr.data_size = t->buffer->data_size;            tr.offsets_size = t->buffer->offsets_size;            tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;            tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));               if (put_user(cmd, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);            if (copy_to_user(ptr, &tr, sizeof(tr)))                return -EFAULT;            ptr += sizeof(tr);               ......               list_del(&t->work.entry);            t->buffer->allow_user_free = 1;            if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {                t->to_parent = thread->transaction_stack;                t->to_thread = thread;                thread->transaction_stack = t;            } else {                t->buffer->transaction = NULL;                kfree(t);                binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;            }            break;        }       done:           ......        return 0;    }Service Manager被唤醒之后,就进入while循环开始处理事务了。这里wait_for_proc_work等于1,并且proc->todo不为空,所以从proc->todo列表中得到第一个工作项: w = list_first_entry(&proc->todo, struct binder_work, entry);从上面的描述中,我们知道,这个工作项的类型为BINDER_WORK_TRANSACTION,于是通过下面语句得到事务项:  t = container_of(w, struct binder_transaction, work);接着就是把事务项t中的数据拷贝到本地局部变量struct binder_transaction_data tr中去了: if (t->buffer->target_node) {        struct binder_node *target_node = t->buffer->target_node;        tr.target.ptr = target_node->ptr;        tr.cookie =  target_node->cookie;        ......        cmd = BR_TRANSACTION;    } else {        ......    }    tr.code = t->code;    tr.flags = t->flags;    tr.sender_euid = t->sender_euid;       if (t->from) {        struct task_struct *sender = t->from->proc->tsk;        tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);    } else {        tr.sender_pid = 0;    }       tr.data_size = t->buffer->data_size;    tr.offsets_size = t->buffer->offsets_size;    tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;    tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));这里有一个非常重要的地方,是Binder进程间通信机制的精髓所在:    tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;    tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));t->buffer->data所指向的地址是内核空间的,现在要把数据返回给Service Manager进程的用户空间,而Service Manager进程的用户空间是不能访问内核空间的数据的,所以这里要作一下处理。怎么处理呢?我们在学面向对象语言的时候,对象的拷贝有深拷贝和浅拷贝之分,深拷贝是把另外分配一块新内存,然后把原始对象的内容搬过去,浅拷贝是并没有为新对象分配一块新空间,而只是分配一个引用,而个引用指向原始对象。Binder机制用的是类似浅拷贝的方法,通过在用户空间分配一个虚拟地址,然后让这个用户空间虚拟地址与 t->buffer->data这个内核空间虚拟地址指向同一个物理地址,这样就可以实现浅拷贝了。怎么样用户空间和内核空间的虚拟地址同时指向同一个物理地址呢?请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,那里有详细描述。这里只要将t->buffer->data加上一个偏移值proc->user_buffer_offset就可以得到t->buffer->data对应的用户空间虚拟地址了。调整了tr.data.ptr.buffer的值之后,不要忘记也要一起调整tr.data.ptr.offsets的值。接着就是把tr的内容拷贝到用户传进来的缓冲区去了,指针ptr指向这个用户缓冲区的地址:if (put_user(cmd, (uint32_t __user *)ptr))        return -EFAULT;    ptr += sizeof(uint32_t);    if (copy_to_user(ptr, &tr, sizeof(tr)))        return -EFAULT;    ptr += sizeof(tr);这里可以看出,这里只是对作tr.data.ptr.bufferr和tr.data.ptr.offsets的内容作了浅拷贝。最后,由于已经处理了这个事务,要把它从todo列表中删除:list_del(&t->work.entry);    t->buffer->allow_user_free = 1;    if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {        t->to_parent = thread->transaction_stack;        t->to_thread = thread;        thread->transaction_stack = t;    } else {        t->buffer->transaction = NULL;        kfree(t);        binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;    }注意,这里的cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为true,表明这个事务虽然在驱动程序中已经处理完了,但是它仍然要等待Service Manager完成之后,给驱动程序一个确认,也就是需要等待回复,于是把当前事务t放在thread->transaction_stack队列的头部: t->to_parent = thread->transaction_stack;    t->to_thread = thread;    thread->transaction_stack = t;如果cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为false,那就不需要等待回复了,直接把事务t删掉。这个while最后通过一个break跳了出来,最后返回到binder_ioctl函数中:static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)    {        int ret;        struct binder_proc *proc = filp->private_data;        struct binder_thread *thread;        unsigned int size = _IOC_SIZE(cmd);        void __user *ubuf = (void __user *)arg;           ......           switch (cmd) {        case BINDER_WRITE_READ: {            struct binder_write_read bwr;            if (size != sizeof(struct binder_write_read)) {                ret = -EINVAL;                goto err;            }            if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {                ret = -EFAULT;                goto err;            }            ......            if (bwr.read_size > 0) {                ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);                if (!list_empty(&proc->todo))                    wake_up_interruptible(&proc->wait);                if (ret < 0) {                    if (copy_to_user(ubuf, &bwr, sizeof(bwr)))                        ret = -EFAULT;                    goto err;                }            }            ......            if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {                ret = -EFAULT;                goto err;            }            break;            }        ......        default:            ret = -EINVAL;            goto err;        }        ret = 0;    err:        ......        return ret;    }从binder_thread_read返回来后,再看看proc->todo是否还有事务等待处理,如果是,就把睡眠在proc->wait队列的线程唤醒来处理。最后,把本地变量struct binder_write_read bwr的内容拷贝回到用户传进来的缓冲区中,就返回了。这里就是返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数了:  void binder_loop(struct binder_state *bs, binder_handler func)    {        int res;        struct binder_write_read bwr;        unsigned readbuf[32];           bwr.write_size = 0;        bwr.write_consumed = 0;        bwr.write_buffer = 0;           readbuf[0] = BC_ENTER_LOOPER;        binder_write(bs, readbuf, sizeof(unsigned));           for (;;) {            bwr.read_size = sizeof(readbuf);            bwr.read_consumed = 0;            bwr.read_buffer = (unsigned) readbuf;               res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);               if (res < 0) {                LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));                break;            }               res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);            if (res == 0) {                LOGE("binder_loop: unexpected reply?!\n");                break;            }            if (res < 0) {                LOGE("binder_loop: io error %d %s\n", res, strerror(errno));                break;            }        }    }返回来的数据都放在readbuf中,接着调用binder_parse进行解析: int binder_parse(struct binder_state *bs, struct binder_io *bio,                     uint32_t *ptr, uint32_t size, binder_handler func)    {        int r = 1;        uint32_t *end = ptr + (size / 4);           while (ptr < end) {            uint32_t cmd = *ptr++;            ......            case BR_TRANSACTION: {                struct binder_txn *txn = (void *) ptr;                if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {                    LOGE("parse: txn too small!\n");                    return -1;                }                binder_dump_txn(txn);                if (func) {                    unsigned rdata[256/4];                    struct binder_io msg;                    struct binder_io reply;                    int res;                       bio_init(&reply, rdata, sizeof(rdata), 4);                    bio_init_from_txn(&msg, txn);                    res = func(bs, txn, &msg, &reply);                    binder_send_reply(bs, &reply, txn->data, res);                }                ptr += sizeof(*txn) / sizeof(uint32_t);                break;                                 }            ......            default:                LOGE("parse: OOPS %d\n", cmd);                return -1;            }        }           return r;    }首先把从Binder驱动程序读出来的数据转换为一个struct binder_txn结构体,保存在txn本地变量中,struct binder_txn定义在frameworks/base/cmds/servicemanager/binder.h文件中:struct binder_txn    {        void *target;        void *cookie;        uint32_t code;        uint32_t flags;           uint32_t sender_pid;        uint32_t sender_euid;           uint32_t data_size;        uint32_t offs_size;        void *data;        void *offs;    };函数中还用到了另外一个数据结构struct binder_io,也是定义在frameworks/base/cmds/servicemanager/binder.h文件中: struct binder_io    {        char *data;            /* pointer to read/write from */        uint32_t *offs;        /* array of offsets */        uint32_t data_avail;   /* bytes available in data buffer */        uint32_t offs_avail;   /* entries available in offsets array */           char *data0;           /* start of data buffer */        uint32_t *offs0;       /* start of offsets buffer */        uint32_t flags;        uint32_t unused;    };接着往下看,函数调bio_init来初始化reply变量: void bio_init(struct binder_io *bio, void *data,                  uint32_t maxdata, uint32_t maxoffs)    {        uint32_t n = maxoffs * sizeof(uint32_t);           if (n > maxdata) {            bio->flags = BIO_F_OVERFLOW;            bio->data_avail = 0;            bio->offs_avail = 0;            return;        }           bio->data = bio->data0 = data + n;        bio->offs = bio->offs0 = data;        bio->data_avail = maxdata - n;        bio->offs_avail = maxoffs;        bio->flags = 0;    }接着又调用bio_init_from_txn来初始化msg变量:void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn)    {        bio->data = bio->data0 = txn->data;        bio->offs = bio->offs0 = txn->offs;        bio->data_avail = txn->data_size;        bio->offs_avail = txn->offs_size / 4;        bio->flags = BIO_F_SHARED;    }最后,真正进行处理的函数是从参数中传进来的函数指针func,这里就是定义在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函数:int svcmgr_handler(struct binder_state *bs,                       struct binder_txn *txn,                       struct binder_io *msg,                       struct binder_io *reply)    {        struct svcinfo *si;        uint16_t *s;        unsigned len;        void *ptr;        uint32_t strict_policy;           if (txn->target != svcmgr_handle)            return -1;           // Equivalent to Parcel::enforceInterface(), reading the RPC        // header with the strict mode policy mask and the interface name.        // Note that we ignore the strict_policy and don't propagate it        // further (since we do no outbound RPCs anyway).        strict_policy = bio_get_uint32(msg);        s = bio_get_string16(msg, &len);        if ((len != (sizeof(svcmgr_id) / 2)) ||            memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {                fprintf(stderr,"invalid id %s\n", str8(s));                return -1;        }           switch(txn->code) {        ......        case SVC_MGR_ADD_SERVICE:            s = bio_get_string16(msg, &len);            ptr = bio_get_ref(msg);            if (do_add_service(bs, s, len, ptr, txn->sender_euid))                return -1;            break;        ......        }           bio_put_uint32(reply, 0);        return 0;    }回忆一下,在BpServiceManager::addService时,传给Binder驱动程序的参数为: writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);    writeString16("android.os.IServiceManager");    writeString16("media.player");    writeStrongBinder(new MediaPlayerService());这里的语句: strict_policy = bio_get_uint32(msg);    s = bio_get_string16(msg, &len);    s = bio_get_string16(msg, &len);    ptr = bio_get_ref(msg);就是依次把它们读取出来了,这里,我们只要看一下bio_get_ref的实现。先看一个数据结构struct binder_obj的定义:struct binder_object    {        uint32_t type;        uint32_t flags;        void *pointer;        void *cookie;    };这个结构体其实就是对应struct flat_binder_obj的。         接着看bio_get_ref实现:void *bio_get_ref(struct binder_io *bio){struct binder_object *obj;obj = _bio_get_obj(bio);if (!obj)return 0;if (obj->type == BINDER_TYPE_HANDLE)return obj->pointer;return 0;}_bio_get_obj这个函数就不跟进去看了,它的作用就是从binder_io中取得第一个还没取获取过的binder_object。在这个场景下,就是我们最开始传过来代表MediaPlayerService的flat_binder_obj了,这个原始的flat_binder_obj的type为BINDER_TYPE_BINDER,binder为指向MediaPlayerService的弱引用的地址。在前面我们说过,在Binder驱动驱动程序里面,会把这个flat_binder_obj的type改为BINDER_TYPE_HANDLE,handle改为一个句柄值。这里的handle值就等于obj->pointer的值。回到svcmgr_handler函数,调用do_add_service进一步处理:  int do_add_service(struct binder_state *bs,                       uint16_t *s, unsigned len,                       void *ptr, unsigned uid)    {        struct svcinfo *si;    //    LOGI("add_service('%s',%p) uid=%d\n", str8(s), ptr, uid);           if (!ptr || (len == 0) || (len > 127))            return -1;           if (!svc_can_register(uid, s)) {            LOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n",                 str8(s), ptr, uid);            return -1;        }           si = find_svc(s, len);        if (si) {            if (si->ptr) {                LOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED\n",                     str8(s), ptr, uid);                return -1;            }            si->ptr = ptr;        } else {            si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));            if (!si) {                LOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n",                     str8(s), ptr, uid);                return -1;            }            si->ptr = ptr;            si->len = len;            memcpy(si->name, s, (len + 1) * sizeof(uint16_t));            si->name[len] = '\0';            si->death.func = svcinfo_death;            si->death.ptr = si;            si->next = svclist;            svclist = si;        }           binder_acquire(bs, ptr);        binder_link_to_death(bs, ptr, &si->death);        return 0;    }这个函数的实现很简单,就是把MediaPlayerService这个Binder实体的引用写到一个struct svcinfo结构体中,主要是它的名称和句柄值,然后插入到链接svclist的头部去。这样,Client来向Service Manager查询服务接口时,只要给定服务名称,Service Manger就可以返回相应的句柄值了。这个函数执行完成后,返回到svcmgr_handler函数,函数的最后,将一个错误码0写到reply变量中去,表示一切正常:bio_put_uint32(reply, 0);svcmgr_handler函数执行完成后,返回到binder_parse函数,执行下面语句:binder_send_reply(bs, &reply, txn->data, res);我们看一下binder_send_reply的实现,从函数名就可以猜到它要做什么了,告诉Binder驱动程序,它完成了Binder驱动程序交给它的任务了。  void binder_send_reply(struct binder_state *bs,                           struct binder_io *reply,                           void *buffer_to_free,                           int status)    {        struct {            uint32_t cmd_free;            void *buffer;            uint32_t cmd_reply;            struct binder_txn txn;        } __attribute__((packed)) data;           data.cmd_free = BC_FREE_BUFFER;        data.buffer = buffer_to_free;        data.cmd_reply = BC_REPLY;        data.txn.target = 0;        data.txn.cookie = 0;        data.txn.code = 0;        if (status) {            data.txn.flags = TF_STATUS_CODE;            data.txn.data_size = sizeof(int);            data.txn.offs_size = 0;            data.txn.data = &status;            data.txn.offs = 0;        } else {            data.txn.flags = 0;            data.txn.data_size = reply->data - reply->data0;            data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);            data.txn.data = reply->data0;            data.txn.offs = reply->offs0;        }        binder_write(bs, &data, sizeof(data));    }从这里可以看出,binder_send_reply告诉Binder驱动程序执行BC_FREE_BUFFER和BC_REPLY命令,前者释放之前在binder_transaction分配的空间,地址为buffer_to_free,buffer_to_free这个地址是Binder驱动程序把自己在内核空间用的地址转换成用户空间地址再传给Service Manager的,所以Binder驱动程序拿到这个地址后,知道怎么样释放这个空间;后者告诉MediaPlayerService,它的addService操作已经完成了,错误码是0,保存在data.txn.data中。再来看binder_write函数:  int binder_write(struct binder_state *bs, void *data, unsigned len)    {        struct binder_write_read bwr;        int res;        bwr.write_size = len;        bwr.write_consumed = 0;        bwr.write_buffer = (unsigned) data;        bwr.read_size = 0;        bwr.read_consumed = 0;        bwr.read_buffer = 0;        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);        if (res < 0) {            fprintf(stderr,"binder_write: ioctl failed (%s)\n",                    strerror(errno));        }        return res;    }这里可以看出,只有写操作,没有读操作,即read_size为0。这里又是一个ioctl的BINDER_WRITE_READ操作。直入到驱动程序的binder_ioctl函数后,执行BINDER_WRITE_READ命令,这里就不累述了。最后,从binder_ioctl执行到binder_thread_write函数,我们首先看第一个命令BC_FREE_BUFFER:int    binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,                        void __user *buffer, int size, signed long *consumed)    {        uint32_t cmd;        void __user *ptr = buffer + *consumed;        void __user *end = buffer + size;           while (ptr < end && thread->return_error == BR_OK) {            if (get_user(cmd, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);            if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {                binder_stats.bc[_IOC_NR(cmd)]++;                proc->stats.bc[_IOC_NR(cmd)]++;                thread->stats.bc[_IOC_NR(cmd)]++;            }            switch (cmd) {            ......            case BC_FREE_BUFFER: {                void __user *data_ptr;                struct binder_buffer *buffer;                   if (get_user(data_ptr, (void * __user *)ptr))                    return -EFAULT;                ptr += sizeof(void *);                   buffer = binder_buffer_lookup(proc, data_ptr);                if (buffer == NULL) {                    binder_user_error("binder: %d:%d "                        "BC_FREE_BUFFER u%p no match\n",                        proc->pid, thread->pid, data_ptr);                    break;                }                if (!buffer->allow_user_free) {                    binder_user_error("binder: %d:%d "                        "BC_FREE_BUFFER u%p matched "                        "unreturned buffer\n",                        proc->pid, thread->pid, data_ptr);                    break;                }                if (binder_debug_mask & BINDER_DEBUG_FREE_BUFFER)                    printk(KERN_INFO "binder: %d:%d BC_FREE_BUFFER u%p found buffer %d for %s transaction\n",                    proc->pid, thread->pid, data_ptr, buffer->debug_id,                    buffer->transaction ? "active" : "finished");                   if (buffer->transaction) {                    buffer->transaction->buffer = NULL;                    buffer->transaction = NULL;                }                if (buffer->async_transaction && buffer->target_node) {                    BUG_ON(!buffer->target_node->has_async_transaction);                    if (list_empty(&buffer->target_node->async_todo))                        buffer->target_node->has_async_transaction = 0;                    else                        list_move_tail(buffer->target_node->async_todo.next, &thread->todo);                }                binder_transaction_buffer_release(proc, buffer, NULL);                binder_free_buf(proc, buffer);                break;                                 }               ......            *consumed = ptr - buffer;        }        return 0;    }首先通过看这个语句:get_user(data_ptr, (void * __user *)ptr)这个是获得要删除的Buffer的用户空间地址,接着通过下面这个语句来找到这个地址对应的struct binder_buffer信息:buffer = binder_buffer_lookup(proc, data_ptr);因为这个空间是前面在binder_transaction里面分配的,所以这里一定能找到。最后,就可以释放这块内存了:    binder_transaction_buffer_release(proc, buffer, NULL);    binder_free_buf(proc, buffer);再来看另外一个命令BC_REPLY: int    binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,                        void __user *buffer, int size, signed long *consumed)    {        uint32_t cmd;        void __user *ptr = buffer + *consumed;        void __user *end = buffer + size;           while (ptr < end && thread->return_error == BR_OK) {            if (get_user(cmd, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);            if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {                binder_stats.bc[_IOC_NR(cmd)]++;                proc->stats.bc[_IOC_NR(cmd)]++;                thread->stats.bc[_IOC_NR(cmd)]++;            }            switch (cmd) {            ......            case BC_TRANSACTION:            case BC_REPLY: {                struct binder_transaction_data tr;                   if (copy_from_user(&tr, ptr, sizeof(tr)))                    return -EFAULT;                ptr += sizeof(tr);                binder_transaction(proc, thread, &tr, cmd == BC_REPLY);                break;                           }               ......            *consumed = ptr - buffer;        }        return 0;    }又再次进入到binder_transaction函数: static void    binder_transaction(struct binder_proc *proc, struct binder_thread *thread,    struct binder_transaction_data *tr, int reply)    {        struct binder_transaction *t;        struct binder_work *tcomplete;        size_t *offp, *off_end;        struct binder_proc *target_proc;        struct binder_thread *target_thread = NULL;        struct binder_node *target_node = NULL;        struct list_head *target_list;        wait_queue_head_t *target_wait;        struct binder_transaction *in_reply_to = NULL;        struct binder_transaction_log_entry *e;        uint32_t return_error;           ......           if (reply) {            in_reply_to = thread->transaction_stack;            if (in_reply_to == NULL) {                ......                return_error = BR_FAILED_REPLY;                goto err_empty_call_stack;            }            binder_set_nice(in_reply_to->saved_priority);            if (in_reply_to->to_thread != thread) {                .......                goto err_bad_call_stack;            }            thread->transaction_stack = in_reply_to->to_parent;            target_thread = in_reply_to->from;            if (target_thread == NULL) {                return_error = BR_DEAD_REPLY;                goto err_dead_binder;            }            if (target_thread->transaction_stack != in_reply_to) {                ......                return_error = BR_FAILED_REPLY;                in_reply_to = NULL;                target_thread = NULL;                goto err_dead_binder;            }            target_proc = target_thread->proc;        } else {            ......        }        if (target_thread) {            e->to_thread = target_thread->pid;            target_list = &target_thread->todo;            target_wait = &target_thread->wait;        } else {            ......        }           /* TODO: reuse incoming transaction for reply */        t = kzalloc(sizeof(*t), GFP_KERNEL);        if (t == NULL) {            return_error = BR_FAILED_REPLY;            goto err_alloc_t_failed;        }           tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);        if (tcomplete == NULL) {            return_error = BR_FAILED_REPLY;            goto err_alloc_tcomplete_failed;        }           if (!reply && !(tr->flags & TF_ONE_WAY))            t->from = thread;        else            t->from = NULL;        t->sender_euid = proc->tsk->cred->euid;        t->to_proc = target_proc;        t->to_thread = target_thread;        t->code = tr->code;        t->flags = tr->flags;        t->priority = task_nice(current);        t->buffer = binder_alloc_buf(target_proc, tr->data_size,            tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));        if (t->buffer == NULL) {            return_error = BR_FAILED_REPLY;            goto err_binder_alloc_buf_failed;        }        t->buffer->allow_user_free = 0;        t->buffer->debug_id = t->debug_id;        t->buffer->transaction = t;        t->buffer->target_node = target_node;        if (target_node)            binder_inc_node(target_node, 1, 0, NULL);           offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));           if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {            binder_user_error("binder: %d:%d got transaction with invalid "                "data ptr\n", proc->pid, thread->pid);            return_error = BR_FAILED_REPLY;            goto err_copy_data_failed;        }        if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {            binder_user_error("binder: %d:%d got transaction with invalid "                "offsets ptr\n", proc->pid, thread->pid);            return_error = BR_FAILED_REPLY;            goto err_copy_data_failed;        }           ......           if (reply) {            BUG_ON(t->buffer->async_transaction != 0);            binder_pop_transaction(target_thread, in_reply_to);        } else if (!(t->flags & TF_ONE_WAY)) {            ......        } else {            ......        }        t->work.type = BINDER_WORK_TRANSACTION;        list_add_tail(&t->work.entry, target_list);        tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;        list_add_tail(&tcomplete->entry, &thread->todo);        if (target_wait)            wake_up_interruptible(target_wait);        return;        ......    }注意,这里的reply为1,我们忽略掉其它无关代码。前面Service Manager正在binder_thread_read函数中被MediaPlayerService启动后进程唤醒后,在最后会把当前处理完的事务放在thread->transaction_stack中: if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {        t->to_parent = thread->transaction_stack;        t->to_thread = thread;        thread->transaction_stack = t;    }所以,这里,首先是把它这个binder_transaction取回来,并且放在本地变量in_reply_to中:in_reply_to = thread->transaction_stack;接着就可以通过in_reply_to得到最终发出这个事务请求的线程和进程:    target_thread = in_reply_to->from;    target_proc = target_thread->proc;然后得到target_list和target_wait:    target_list = &target_thread->todo;    target_wait = &target_thread->wait;下面这一段代码: /* TODO: reuse incoming transaction for reply */    t = kzalloc(sizeof(*t), GFP_KERNEL);    if (t == NULL) {        return_error = BR_FAILED_REPLY;        goto err_alloc_t_failed;    }       tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);    if (tcomplete == NULL) {        return_error = BR_FAILED_REPLY;        goto err_alloc_tcomplete_failed;    }       if (!reply && !(tr->flags & TF_ONE_WAY))        t->from = thread;    else        t->from = NULL;    t->sender_euid = proc->tsk->cred->euid;    t->to_proc = target_proc;    t->to_thread = target_thread;    t->code = tr->code;    t->flags = tr->flags;    t->priority = task_nice(current);    t->buffer = binder_alloc_buf(target_proc, tr->data_size,        tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));    if (t->buffer == NULL) {        return_error = BR_FAILED_REPLY;        goto err_binder_alloc_buf_failed;    }    t->buffer->allow_user_free = 0;    t->buffer->debug_id = t->debug_id;    t->buffer->transaction = t;    t->buffer->target_node = target_node;    if (target_node)        binder_inc_node(target_node, 1, 0, NULL);       offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));       if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {        binder_user_error("binder: %d:%d got transaction with invalid "            "data ptr\n", proc->pid, thread->pid);        return_error = BR_FAILED_REPLY;        goto err_copy_data_failed;    }    if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {        binder_user_error("binder: %d:%d got transaction with invalid "            "offsets ptr\n", proc->pid, thread->pid);        return_error = BR_FAILED_REPLY;        goto err_copy_data_failed;    }我们在前面已经分析过了,这里不再重复。但是有一点要注意的是,这里target_node为NULL,因此,t->buffer->target_node也为NULL。函数本来有一个for循环,用来处理数据中的Binder对象,这里由于没有Binder对象,所以就略过了。到了下面这句代码:binder_pop_transaction(target_thread, in_reply_to);我们看看做了什么事情: static void    binder_pop_transaction(        struct binder_thread *target_thread, struct binder_transaction *t)    {        if (target_thread) {            BUG_ON(target_thread->transaction_stack != t);            BUG_ON(target_thread->transaction_stack->from != target_thread);            target_thread->transaction_stack =                target_thread->transaction_stack->from_parent;            t->from = NULL;        }        t->need_reply = 0;        if (t->buffer)            t->buffer->transaction = NULL;        kfree(t);        binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;    }由于到了这里,已经不需要in_reply_to这个transaction了,就把它删掉。回到binder_transaction函数:    t->work.type = BINDER_WORK_TRANSACTION;    list_add_tail(&t->work.entry, target_list);    tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;    list_add_tail(&tcomplete->entry, &thread->todo);和前面一样,分别把t和tcomplete分别放在target_list和thread->todo队列中,这里的target_list指的就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程的的thread->todo队列了,而thread->todo指的是Service Manager中用来回复IServiceManager::addService请求的线程。最后,唤醒等待在target_wait队列上的线程了,就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程了,它最后在binder_thread_read函数中睡眠在thread->wait上,就是这里的target_wait了:if (target_wait)        wake_up_interruptible(target_wait);这样,Service Manger回复调用IServiceManager::addService请求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数等待下一个Client请求的到来。事实上,Service Manger回到binder_loop函数再次执行ioctl函数时候,又会再次进入到binder_thread_read函数。这时个会发现thread->todo不为空,这是因为刚才我们调用了:list_add_tail(&tcomplete->entry, &thread->todo);把一个工作项tcompelete放在了在thread->todo中,这个tcompelete的type为BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驱动程序会执行下面操作: switch (w->type) {    case BINDER_WORK_TRANSACTION_COMPLETE: {        cmd = BR_TRANSACTION_COMPLETE;        if (put_user(cmd, (uint32_t __user *)ptr))            return -EFAULT;        ptr += sizeof(uint32_t);           list_del(&w->entry);        kfree(w);           } break;        ......    }binder_loop函数执行完这个ioctl调用后,才会在下一次调用ioctl进入到Binder驱动程序进入休眠状态,等待下一次Client的请求。上面讲到调用IServiceManager::addService的MediaPlayerService的Server主线程被唤醒了,于是,重新执行binder_thread_read函数:  static int    binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,                       void  __user *buffer, int size, signed long *consumed, int non_block)    {        void __user *ptr = buffer + *consumed;        void __user *end = buffer + size;           int ret = 0;        int wait_for_proc_work;           if (*consumed == 0) {            if (put_user(BR_NOOP, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);        }       retry:        wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);           ......           if (wait_for_proc_work) {            ......        } else {            if (non_block) {                if (!binder_has_thread_work(thread))                    ret = -EAGAIN;            } else                ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));        }           ......           while (1) {            uint32_t cmd;            struct binder_transaction_data tr;            struct binder_work *w;            struct binder_transaction *t = NULL;               if (!list_empty(&thread->todo))                w = list_first_entry(&thread->todo, struct binder_work, entry);            else if (!list_empty(&proc->todo) && wait_for_proc_work)                w = list_first_entry(&proc->todo, struct binder_work, entry);            else {                if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */                    goto retry;                break;            }               ......               switch (w->type) {            case BINDER_WORK_TRANSACTION: {                t = container_of(w, struct binder_transaction, work);                                          } break;            ......            }               if (!t)                continue;               BUG_ON(t->buffer == NULL);            if (t->buffer->target_node) {                ......            } else {                tr.target.ptr = NULL;                tr.cookie = NULL;                cmd = BR_REPLY;            }            tr.code = t->code;            tr.flags = t->flags;            tr.sender_euid = t->sender_euid;               if (t->from) {                ......            } else {                tr.sender_pid = 0;            }               tr.data_size = t->buffer->data_size;            tr.offsets_size = t->buffer->offsets_size;            tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;            tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));               if (put_user(cmd, (uint32_t __user *)ptr))                return -EFAULT;            ptr += sizeof(uint32_t);            if (copy_to_user(ptr, &tr, sizeof(tr)))                return -EFAULT;            ptr += sizeof(tr);               ......               list_del(&t->work.entry);            t->buffer->allow_user_free = 1;            if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {                ......            } else {                t->buffer->transaction = NULL;                kfree(t);                binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;            }            break;        }       done:        ......        return 0;    }在while循环中,从thread->todo得到w,w->type为BINDER_WORK_TRANSACTION,于是,得到t。从上面可以知道,Service Manager反回了一个0回来,写在t->buffer->data里面,现在把t->buffer->data加上proc->user_buffer_offset,得到用户空间地址,保存在tr.data.ptr.buffer里面,这样用户空间就可以访问这个返回码了。由于cmd不等于BR_TRANSACTION,这时就可以把t删除掉了,因为以后都不需要用了。执行完这个函数后,就返回到binder_ioctl函数,执行下面语句,把数据返回给用户空间:if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {        ret = -EFAULT;        goto err;    }接着返回到用户空间IPCThreadState::talkWithDriver函数,最后返回到IPCThreadState::waitForResponse函数,最终执行到下面语句: status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)    {        int32_t cmd;        int32_t err;           while (1) {            if ((err=talkWithDriver()) < NO_ERROR) break;               ......               cmd = mIn.readInt32();               ......               switch (cmd) {            ......            case BR_REPLY:                {                    binder_transaction_data tr;                    err = mIn.read(&tr, sizeof(tr));                    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");                    if (err != NO_ERROR) goto finish;                       if (reply) {                        if ((tr.flags & TF_STATUS_CODE) == 0) {                            reply->ipcSetDataReference(                                reinterpret_cast(tr.data.ptr.buffer),                                tr.data_size,                                reinterpret_cast(tr.data.ptr.offsets),                                tr.offsets_size/sizeof(size_t),                                freeBuffer, this);                        } else {                            ......                        }                    } else {                        ......                    }                }                goto finish;               ......            }        }       finish:        ......        return err;    }注意,这里的tr.flags等于0,这个是在上面的binder_send_reply函数里设置的。最终把结果保存在reply了:           reply->ipcSetDataReference(           reinterpret_cast(tr.data.ptr.buffer),           tr.data_size,           reinterpret_cast(tr.data.ptr.offsets),           tr.offsets_size/sizeof(size_t),           freeBuffer, this);这个函数我们就不看了,有兴趣的读者可以研究一下。从这里层层返回,最后回到MediaPlayerService::instantiate函数中。至此,IServiceManager::addService终于执行完毕了。这个过程非常复杂,但是如果我们能够深刻地理解这一过程,将能很好地理解Binder机制的设计思想和实现过程。这里,对IServiceManager::addService过程中MediaPlayerService、ServiceManager和BinderDriver之间的交互作一个小结:回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,接下去还要执行下面两个函数:    ProcessState::self()->startThreadPool();    IPCThreadState::self()->joinThreadPool();首先看ProcessState::startThreadPool函数的实现: void ProcessState::startThreadPool()    {        AutoMutex _l(mLock);        if (!mThreadPoolStarted) {            mThreadPoolStarted = true;            spawnPooledThread(true);        }    }这里调用spwanPooledThread:void ProcessState::spawnPooledThread(bool isMain)    {        if (mThreadPoolStarted) {            int32_t s = android_atomic_add(1, &mThreadPoolSeq);            char buf[32];            sprintf(buf, "Binder Thread #%d", s);            LOGV("Spawning new pooled thread, name=%s\n", buf);            sp t = new PoolThread(isMain);            t->run(buf);        }    }这里主要是创建一个线程,PoolThread继续Thread类,Thread类定义在frameworks/base/libs/utils/Threads.cpp文件中,其run函数最终调用子类的threadLoop函数,这里即为PoolThread::threadLoop函数:virtual bool threadLoop()    {        IPCThreadState::self()->joinThreadPool(mIsMain);        return false;    }这里和frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数一样,最终都是调用了IPCThreadState::joinThreadPool函数,它们的区别是,一个参数是true,一个是默认值false。我们来看一下这个函数的实现: void IPCThreadState::joinThreadPool(bool isMain)    {        LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid());           mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);           ......           status_t result;        do {            int32_t cmd;               .......               // now get the next command to be processed, waiting if necessary            result = talkWithDriver();            if (result >= NO_ERROR) {                size_t IN = mIn.dataAvail();                if (IN < sizeof(int32_t)) continue;                cmd = mIn.readInt32();                ......                }                   result = executeCommand(cmd);            }               ......        } while (result != -ECONNREFUSED && result != -EBADF);           .......           mOut.writeInt32(BC_EXIT_LOOPER);        talkWithDriver(false);    }这个函数最终是在一个无穷循环中,通过调用talkWithDriver函数来和Binder驱动程序进行交互,实际上就是调用talkWithDriver来等待Client的请求,然后再调用executeCommand来处理请求,而在executeCommand函数中,最终会调用BBinder::transact来真正处理Client的请求: status_t IPCThreadState::executeCommand(int32_t cmd)    {        BBinder* obj;        RefBase::weakref_type* refs;        status_t result = NO_ERROR;           switch (cmd) {        ......           case BR_TRANSACTION:            {                binder_transaction_data tr;                result = mIn.read(&tr, sizeof(tr));                   ......                   Parcel reply;                   ......                   if (tr.target.ptr) {                    sp b((BBinder*)tr.cookie);                    const status_t error = b->transact(tr.code, buffer, &reply, tr.flags);                    if (error < NO_ERROR) reply.setError(error);                   } else {                    const status_t error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);                    if (error < NO_ERROR) reply.setError(error);                }                   ......            }            break;           .......        }           if (result != NO_ERROR) {            mLastError = result;        }           return result;    }接下来再看一下BBinder::transact的实现: status_t BBinder::transact(        uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)    {        data.setDataPosition(0);           status_t err = NO_ERROR;        switch (code) {            case PING_TRANSACTION:                reply->writeInt32(pingBinder());                break;            default:                err = onTransact(code, data, reply, flags);                break;        }           if (reply != NULL) {            reply->setDataPosition(0);        }           return err;    }最终会调用onTransact函数来处理。在这个场景中,BnMediaPlayerService继承了BBinder类,并且重载了onTransact函数,因此,这里实际上是调用了BnMediaPlayerService::onTransact函数,这个函数定义在frameworks/base/libs/media/libmedia/IMediaPlayerService.cpp文件中:status_t BnMediaPlayerService::onTransact(        uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)    {        switch(code) {            case CREATE_URL: {                ......                             } break;            case CREATE_FD: {                ......                            } break;            case DECODE_URL: {                ......                             } break;            case DECODE_FD: {                ......                            } break;            case CREATE_MEDIA_RECORDER: {                ......                                        } break;            case CREATE_METADATA_RETRIEVER: {                ......                                            } break;            case GET_OMX: {                ......                          } break;            default:                return BBinder::onTransact(code, data, reply, flags);        }    }
至此,我们就以MediaPlayerService为例,完整地介绍了Android系统进程间通信Binder机制中的Server启动过程。Server启动起来之后,就会在一个无穷循环中等待Client的请求了。在下一篇文章中,我们将介绍Client如何通过Service Manager远程接口来获得Server远程接口,进而调用Server远程接口来使用Server提供的服务,敬请关注。