S3C2410下WinCE6.0的启动过程详解

来源:互联网 发布:实战型锋卫训练场淘宝 编辑:程序博客网 时间:2024/05/17 03:11

本文转自:http://www.cnblogs.com/we-hjb/archive/2008/10/12/1309596.html

    通过前两篇文章的介绍,我们已经知道NBOOT用来引导EBOOT,继而EBOOT加载并引导WinCE操作系统(NK)。那么,WinCE6.0的启动过程又是怎样的呢?本文基于S3C2410的平台做一个详细的分析。需要说明的是,WinCE6.0的整个启动过程对于同一类型的MCU来说大同小异,如S3C2410和PXA270同属ARM平台的MCU,所以他们的启动过程是类似的,可以说唯一的不同就在OAL处,而WinCE操作系统的启动正是从OAL开始的。
    OAL(OEM Adaptation Layer)即OEM适配层,它的主要作用是在移植WinCE到新的硬件平台时减少操作系统的修改,通俗的说就是为WinCE操作系统抹平MCU的差异,使其能很方便的在不同MCU上运行。所以,OAL包括了和系统硬件通讯的最底层代码。内核则通过OAL跟硬件进行交互。逻辑上,OAL是介于CE内核和设备硬件之间的一个代码层,是一个抽象的概念。物理上,OAL和其他一些库一起链接成可执行文件,在WinCE6.0中对应的文件是OAL.exe,这是OAL的客观存在。WinCE6.0中的OAL跟先前的OAL比,是有一些变化的,它从内核中分离出来成为OAL.exe,而内核则变成了Kernel.dll。这样做的好处是可以单独升级OAL。但整体的OAL结构并没有改变,OEM函数保持一致,OAL和Kernel的接口由共享结构NKGLOBAL实现。这一部分的具体内容下一篇再做介绍。下图所示为WinCE6.0的OAL设计。
      

在移植WinCE到新的硬件平台时,创建OAL是最复杂的任务之一。一般来说,最简单的方法是拷贝一个跟新的硬件平台类似的且成熟的OAL,然后根据硬件的不同进行修改,使其满足目标硬件的特定要求。这里不展开说明,回头再单独整理。
     从EBOOT到OAL.exe的跳转是从OEMLaunch()开始的,函数OEMLaunch()中调用Launch(dwPhysLaunchAddr),它的实现代码如下:

LEAF_ENTRY Launch    ldr    r2, = PhysicalStart    ldr     r3, = (VIR_RAM_START - PHY_RAM_START)    sub     r2, r2, r3    mov     r1, #0x0070             ; Disable MMU    mcr     p15, 0, r1, c1, c0, 0    nop    mov     pc, r2                  ; Jump to PStart    nop    ; MMU & caches now disabled.PhysicalStart    mov     r2, #0    mcr     p15, 0, r2, c8, c7, 0   ; Flush the TLB    mov     pc, r0            ; Jump to program we are launching.

    函数Launch()的参数为物理地址,因为在跳转之前已将MMU关闭。该地址可通过VIEWBIN来查看,如下图所示:
     
    如何确定这个地址对应的是NK.bin中的哪一个文件呢,先前说是OAL.exe,证据何在。在PB6.0中增加了浏览NK.bin的功能,我们可以利用此功能查看NK.bin的详细情况,如下图所示:     


     从上图中可以看出0x80205394处对应的是NK.exe,而这里的NK.exe即为OAL.exe。
 至此,我们已经知道EBOOT是如何跳转到OAL.exe中的了。接下来继续看OAL.exe的执行过程。

    OAL的启动代码如下:

LEAF_ENTRY StartUp        ; Compute the OEMAddressTable's physical address and         ; load it into r0. KernelStart expects r0 to contain        ; the physical address of this table. The MMU isn't         ; turned on until well into KernelStart.          add     r0, pc, #g_oalAddressTable - (. + 8)        bl      KernelStart

    OAL的启动代码和EBOOT的启动代码经常复用,但为了代码的简洁,最好还是分开实现,而且在EBOOT中如果已经初始化了相关硬件,那么OAL的启动代码就可以省去那部分工作,可以很简练,如上面的代码所示。

    可以看出,OAL的启动代码又调用了函数KernelStart(),而这个函数是在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\LDR\ARM\armstart.s中实现的,代码如下:

LEAF_ENTRY KernelStart        mov     r11, r0                         ; (r11) = &OEMAddressTable (save pointer)        ; figure out the virtual address of OEMAddressTable        mov     r1, r11                         ; (r1) = &OEMAddressTable (2nd argument to VaFromPa)        bl      VaFromPa        mov     r6, r0                          ; (r6) = VA of OEMAddressTable        ; convert base of PTs to Physical address        ldr     r4, =PTs                        ; (r4) = virtual address of FirstPT        mov     r0, r4                          ; (r0) = virtual address of FirstPT        mov     r1, r11                         ; (r1) = &OEMAddressTable (2nd argument to PaFromVa)        bl      PaFromVa        mov     r10, r0                         ; (r10) = ptr to FirstPT (physical);       Zero out page tables & kernel data page        mov     r0, #0                          ; (r0-r3) = 0's to store        mov     r1, #0        mov     r2, #0        mov     r3, #0        mov     r4, r10                         ; (r4) = first address to clear        add     r5, r10, #KDEnd-PTs             ; (r5) = last address + 118      stmia   r4!, {r0-r3}        stmia   r4!, {r0-r3}        cmp     r4, r5        blo     %B18        ; read the architecture information        bl      GetCpuId        mov     r5, r0 LSR #16                  ; r5 >>= 16        and     r5, r5, #0x0000000f             ; r5 &= 0x0000000f == architecture id        ;       Setup 2nd level page table to map the high memory area which contains the; first level page table, 2nd level page tables, kernel data page, etc.;       (r5) = architecture id        add     r4, r10, #HighPT-PTs            ; (r4) = ptr to high page table        cmp     r5, #ARMv6                      ; v6 or later?; ARMV6_MMU        orrge   r0, r10, #PTL2_KRW + PTL2_SMALL_PAGE + ARMV6_MMU_PTL2_SMALL_XN                                                ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered, nonexecutable; PRE ARMV6_MMU        orrlt   r0, r10, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6)                                                ; Need to replicate AP bits into all 4 fields        orrlt   r0, r0,  #PTL2_SMALL_PAGE + PREARMV6_MMU_PTL2_SMALL_XN                                                ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered, nonexecutable        str     r0, [r4, #0xD0*4]               ; store the entry into 4 slots to map 16K of primary page table        add     r0, r0, #0x1000                 ; step on the physical address        str     r0, [r4, #0xD1*4]        add     r0, r0, #0x1000                 ; step on the physical address        str     r0, [r4, #0xD2*4]        add     r0, r0, #0x1000                 ; step on the physical address        str     r0, [r4, #0xD3*4]        add     r8, r10, #ExceptionVectors-PTs  ; (r8) = ptr to vector page        orr     r0, r8, #PTL2_SMALL_PAGE        ; construct the PTE (C=B=0);; The exception stacks and the vectors are mapped as a single kr/w page.;; Any alternative will use more physical memory.;; Multiple mappings don't provide any real protection: if the vectors were in a r/o page,;; they could still be corrupted via the kr/w setting required for the stacks.        cmp     r5, #ARMv6                      ; v6 or later?; ARMV6_MMU         orrge   r0, r0, #PTL2_KRW; PRE ARMV6_MMU        orrlt   r0, r0, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6)                                                ; Need to replicate AP bits into all 4 fields for pre-V6 MMU        str     r0, [r4, #0xF0*4]               ; store entry for exception stacks and vectors                                                ; other 3 entries now unused        add     r9, r10, #KPage-PTs             ; (r9) = ptr to kdata page        orr     r0, r9, #PTL2_SMALL_PAGE        ; (r0)=PTE for 4K (C=B=0)        ; ARMV6_MMU (condition codes still set)        orrge   r0, r0, #PTL2_KRW_URO           ; No subpage access control, so we must set this all to kr/w+ur/o; PRE ARMV6_MMU        orrlt   r0, r0, #(PTL2_KRW << 0) + (PTL2_KRW << 2) + (PTL2_KRW_URO << 4)                                                ; (r0) = set perms kr/w kr/w kr/w+ur/o r/o        str     r0, [r4, #0xFC*4]               ; store entry for kernel data page        orr     r0, r4, #PTL1_2Y_TABLE          ; (r0) = 1st level PTE for high memory section        add     r1, r10, #0x4000        str     r0, [r1, #-4]                   ; store PTE in last slot of 1st level table;       Fill in first level page table entries to create "statically mapped" regions; from the contents of the OEMAddressTable array.;;       (r5) = architecture id;       (r9) = ptr to KData page;       (r10) = ptr to 1st level page table;       (r11) = ptr to OEMAddressTable array        add     r10, r10, #0x2000               ; (r10) = ptr to 1st PTE for "unmapped space"        mov     r0, #PTL1_SECTION        orr     r0, r0, #PTL1_KRW               ; (r0)=PTE for 0: 1MB (C=B=0, kernel r/w)20      mov     r1, r11                         ; (r1) = ptr to OEMAddressTable array (physical)25      ldr     r2, [r1], #4                    ; (r2) = virtual address to map Bank at        ldr     r3, [r1], #4                    ; (r3) = physical address to map from        ldr     r4, [r1], #4                    ; (r4) = num MB to map        cmp     r4, #0                          ; End of table?        beq     %F29        ldr     r12, =0x1FF00000        and     r2, r2, r12                      ; VA needs 512MB, 1MB aligned.        ldr     r12, =0xFFF00000        and     r3, r3, r12                      ; PA needs 4GB, 1MB aligned.        add     r2, r10, r2, LSR #18        add     r0, r0, r3                      ; (r0) = PTE for next physical page28      str     r0, [r2], #4        add     r0, r0, #0x00100000             ; (r0) = PTE for next physical page        sub     r4, r4, #1                      ; Decrement number of MB left        cmp     r4, #0        bne     %B28                            ; Map next MB        bic     r0, r0, #0xF0000000             ; Clear Section Base Address Field        bic     r0, r0, #0x0FF00000             ; Clear Section Base Address Field        b       %B25                            ; Get next element29        sub     r10, r10, #0x2000               ; (r10) = restore address of 1st level page table        ; The minimal page mappings are setup. Initialize the MMU and turn it on.        ; there are some CPUs with pipeline issues that requires identity mapping before turning on MMU.        ; We'll create an identity mapping for the address we'll jump to when turning on MMU on and remove        ; the mapping after we turn on MMU and running on Virtual address.                ldr     r12, =0xFFF00000                ; (r12) = mask for section bits        and     r1, pc, r12                     ; physical address of where we are                                                 ; NOTE: we assume that the KernelStart function never spam across 1M boundary.        orr     r0, r1, #PTL1_SECTION        orr     r0, r0, #PTL1_KRW               ; (r0) = PTE for 1M for current physical address, C=B=0, kernel r/w        add     r7, r10, r1, LSR #18            ; (r7) = 1st level PT entry for the identity map        ldr     r8, [r7]                        ; (r8) = saved content of the 1st-level PT        str     r0, [r7]                        ; create the identity map        mov     r1, #1        mtc15   r1, c3                          ; Setup access to domain 0 and clear other        mtc15   r10, c2                         ; setup translation base (physical of 1st level PT)        mov     r0, #0        mcr     p15, 0, r0, c8, c7, 0           ; Flush the I&D TLBs        mfc15   r1, c1        orr     r1, r1, #0x007F                 ; changed to read-mod-write for ARM920 Enable: MMU, Align, DCache, WriteBuffer        cmp     r5, #ARMv6                      ; r5 still set        ; ARMV6_MMU        orrge   r1, r1, #0x3000                 ; vector adjust, ICache        orrge   r1, r1, #1<<23                  ; V6-format page tables        orrge   r1, r1, #ARMV6_U_BIT            ; V6-set U bit, let A bit control unalignment support; PRE ARMV6_MMU        orrlt   r1, r1, #0x3200                 ; vector adjust, ICache, ROM protection        ldr     r0, VirtualStart        cmp     r0, #0                          ; make sure no stall on "mov pc,r0" below        mtc15   r1, c1                          ; enable the MMU & Caches        mov     pc, r0                          ;  & jump to new virtual address        nop; MMU & caches now enabled.;;       (r10) = physcial address of 1st level page table;       (r7)  = entry in 1st level PT for identity map;       (r8)  = saved 1st level PT save at (r7)VStart  ldr     r2, =FirstPT                    ; (r2) = VA of 1st level PT        sub     r7, r7, r10                     ; (r7) = offset into 1st-level PT        str     r8, [r2, r7]                    ; restore the temporary identity map        mcr     p15, 0, r0, c8, c7, 0           ; Flush the I&D TLBs;; setup stack for each modes: current mode = supervisor mode;        ldr     sp, =KStack        add     r4, sp, #KData-KStack           ; (r4) = ptr to KDataStruct        ; setup ABORT stack        mov     r1, #ABORT_MODE:OR:0xC0        msr     cpsr_c, r1                      ; switch to Abort Mode w/IRQs disabled        add     sp, r4, #AbortStack-KData        ; setup IRQ stack        mov     r2, #IRQ_MODE:OR:0xC0        msr     cpsr_c, r2                      ; switch to IRQ Mode w/IRQs disabled        add     sp, r4, #IntStack-KData        ; setup FIQ stack        mov     r3, #FIQ_MODE:OR:0xC0        msr     cpsr_c, r3                      ; switch to FIQ Mode w/IRQs disabled        add     sp, r4, #FIQStack-KData        ; setup UNDEF stack        mov     r3,  #UNDEF_MODE:OR:0xC0        msr     cpsr_c, r3                      ; switch to Undefined Mode w/IRQs disabled        mov     sp, r4                          ; (sp_undef) = &KData        ; switch back to Supervisor mode        mov     r0, #SVC_MODE:OR:0xC0        msr     cpsr_c, r0                      ; switch to Supervisor Mode w/IRQs disabled        ldr     sp, =KStack        ; continue initialization in C        add     r0, sp, #KData-KStack           ; (r0) = ptr to KDataStruct        str     r6, [r0, #pAddrMap]             ; store VA of OEMAddressTable in KData        bl      ARMInit          ; call C function to perform the rest of initializations        ; upon return, (r0) = entry point of kernel.dll        mov     r12, r0        ldr     r0, =KData        mov     pc, r12     ; jump to entry of kernel.dll
    从上面的代码可以看出,KernelStart()通过OEMAddressTable初始化了MMU,然后通过调用函数ARMInit()获得kernel.dll的入口点,最后跳转到kernel.dll的入口点处。

为了找到Kernel.dll的入口点,用IDA反汇编kernel.dll文件,可以看到,Kernel.dll的入口点为NKStartup。

    NKStartup()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\ARM\ mdarm.c中,代码如下:终于用C语言了\(^o^)/

//// NKStartup - entry point of kernel.dll.//// NK Loader setup only the minimal mappings, which includes ARMHigh area, and the cached static mapping area,// with *EVERYTHING UNCACHED*. Interrupt vectors are not setup either. So, the init sequence reqiures:// (1) pickup data passed from nk loader// (2) Find entry point of oal, exchange globals, find out the cache mode.// (3) fill in the rest of static mapped area (0xa0000000 - 0xbfffffff), PSL faulting address, interrupt vectors,//     mod stacks, etc. Then, change the 'cached' static mapping area to use cache, and flush I&D TLB.// (4) continue normal loading of kernel (find KITLdll, call OEMInitDebugSerial, etc.)//void NKStartup (struct KDataStruct * pKData){    PFN_OEMInitGlobals pfnInitGlob;    PFN_DllMain pfnKitlEntry;    DWORD dwCpuId = GetCpuId ();    // (1) pickup arguments from the nk loader    g_pKData            = pKData;    pTOC                = (const ROMHDR *) pKData->dwTOCAddr;    g_pOEMAddressTable  = (PADDRMAP) pKData->pAddrMap;    /* get architecture id and update page protection attributes */    pKData->dwArchitectureId = (dwCpuId >> 16) & 0xf;    if (pKData->dwArchitectureId >= ARMArchitectureV6) {        // v6 or later        pKData->dwProtMask = PG_V6_PROTECTION;        pKData->dwRead     = PG_V6_PROT_READ;        pKData->dwWrite    = PG_V6_PROT_WRITE;        pKData->dwKrwUro   = PG_V6_PROT_URO_KRW;        pKData->dwKrwUno   = PG_V6_PROT_UNO_KRW;    } else {        // pre-v6        pKData->dwProtMask = PG_V4_PROTECTION;        pKData->dwRead     = PG_V4_PROT_READ;        pKData->dwWrite    = PG_V4_PROT_WRITE;        pKData->dwKrwUro   = PG_V4_PROT_URO_KRW;        pKData->dwKrwUno   = PG_V4_PROT_UNO_KRW;    }    // initialize nk globals    FirstROM.pTOC       = (ROMHDR *) pTOC;    FirstROM.pNext      = 0;    ROMChain            = &FirstROM;    KInfoTable[KINX_PTOC] = (long)pTOC;    KInfoTable[KINX_PAGESIZE] = VM_PAGE_SIZE;    g_ppdirNK = (PPAGEDIRECTORY) &ArmHigh->firstPT[0];    pKData->pNk  = g_pNKGlobal;    // (2) find entry of oal    pfnInitGlob = (PFN_OEMInitGlobals) pKData->dwOEMInitGlobalsAddr;    // no checking here, if OAL entry point doesn't exist, we can't continue    g_pOemGlobal = pfnInitGlob (g_pNKGlobal);    g_pOemGlobal->dwMainMemoryEndAddress = pTOC->ulRAMEnd;    pKData->pOem = g_pOemGlobal;    // setup globals    pVMProc         = g_pprcNK;    pActvProc       = g_pprcNK;    g_pNKGlobal->pfnWriteDebugString = g_pOemGlobal->pfnWriteDebugString;    // (3) setup vectors, UC mappings, mode stacks, etc.    ARMSetup ();    //    // cache is enabled from here on    //    // (4) common startup code.    // try to load KITL if exist    if ((pfnKitlEntry = (PFN_DllMain) g_pOemGlobal->pfnKITLGlobalInit) ||        (pfnKitlEntry = (PFN_DllMain) FindROMDllEntry (pTOC, KITLDLL))) {        (* pfnKitlEntry) (NULL, DLL_PROCESS_ATTACH, (DWORD) NKKernelLibIoControl);    }#ifdef DEBUG    CurMSec = dwPrevReschedTime = (DWORD) -200000;      // ~3 minutes before wrap#endif    OEMInitDebugSerial ();    // debugchk only works after we have something to print to.    DEBUGCHK (pKData == (struct KDataStruct *) PUserKData);    DEBUGCHK (pKData == &ArmHigh->kdata);    OEMWriteDebugString ((LPWSTR)NKSignon);    /* Copy interlocked api code into the kpage */    DEBUGCHK(sizeof(struct KDataStruct) <= FIRST_INTERLOCK);    DEBUGCHK((InterlockedEnd-InterlockedAPIs)+FIRST_INTERLOCK <= 0x400);    memcpy((char *)g_pKData+FIRST_INTERLOCK, InterlockedAPIs, InterlockedEnd-InterlockedAPIs);    /* setup processor version information */    CEProcessorType     = (dwCpuId >> 4) & 0xFFF;    CEProcessorLevel    = 4;    CEProcessorRevision = (WORD) dwCpuId & 0x0f;    CEInstructionSet    = PROCESSOR_ARM_V4I_INSTRUCTION;    RETAILMSG (1, (L"ProcessorType=%4.4x  Revision=%d\r\n", CEProcessorType, CEProcessorRevision));    RETAILMSG (1, (L"OEMAddressTable = %8.8lx\r\n", g_pOEMAddressTable));    OEMInit();          // initialize firmware    // flush I&D TLB    OEMCacheRangeFlush (NULL, 0, CACHE_SYNC_FLUSH_TLB);    KernelFindMemory();    DEBUGMSG (1, (TEXT("NKStartup done, starting up kernel.\r\n")));    KernelStart ();    // never returned    DEBUGCHK (0);}

    NKStartup()的代码就不多解释了,注释已经很详细。该函数的最后又调用了KernelStart ()函数。注意这里的KernelStart()跟上面曾提到的KernelStart()是不一样的。这里KernelStart()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\ARM\armtrap.s中,代码和反汇编的对比如下图所示。          
    可以看到,这里调用了KernelInit()和FirstSchedule()这两个函数。先说FirstSchedule(),它开始了WinCE6.0的第一个调度。它的实现跟KernelStart()在同一文件中,而实现代码跟WinCE5.0中完全一样。接下来,我们继续跟踪KernelInit()函数,其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\nkinit.c中,代码如下: 

//------------------------------------------------------------------------------// KernelInit - Kernel initialization before scheduling the 1st thread//------------------------------------------------------------------------------void KernelInit (void) {#ifdef DEBUG    g_pNKGlobal->pfnWriteDebugString (TEXT("Windows CE KernelInit\r\n"));#endif    APICallInit ();         // setup API set    HeapInit ();            // setup kernel heap    InitMemoryPool ();      // setup physical memory    PROCInit ();            // initialize process    VMInit (g_pprcNK);      // setup VM for kernel    THRDInit ();            // initialize threads    MapfileInit ();#ifdef DEBUG    g_pNKGlobal->pfnWriteDebugString (TEXT("Scheduling the first thread.\r\n"));#endif}

    这段代码跟WinCE5.0中的结构基本一致,但实际上有很大的不同。跟WinCE6.0启动最紧密的函数是THRDInit (),这之前都是做相应的初始化。THRDInit ()的实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\thread.c中,代码如下:     

//------------------------------------------------------------------------------// THRDInit - initialize thread handling (called at system startup)//------------------------------------------------------------------------------void THRDInit (void) {    LPBYTE      pStack;    DEBUGLOG (1, g_pprcNK);    // don't allow thread create one memory drop below 1% available    if (g_cMinPageThrdCreate < PageFreeCount / 100) {        g_cMinPageThrdCreate = PageFreeCount / 100;    }        // map W32 thread priority if OEM choose to    if (g_pOemGlobal->pfnMapW32Priority) {        BYTE prioMap[MAX_WIN32_PRIORITY_LEVELS];        int  i;        memcpy (prioMap, W32PrioMap, sizeof (prioMap));        g_pOemGlobal->pfnMapW32Priority (MAX_WIN32_PRIORITY_LEVELS, prioMap);        // validate the the priority is mono-increase        for (i = 0; i < MAX_WIN32_PRIORITY_LEVELS-1; i ++) {            if (prioMap[i] >= prioMap[i+1])                break;        }        DEBUGMSG ((MAX_WIN32_PRIORITY_LEVELS-1) != i, (L"ProcInit: Invalid priority map provided by OEM, Ignored!\r\n"));        if ((MAX_WIN32_PRIORITY_LEVELS-1) == i) {            memcpy (W32PrioMap, prioMap, sizeof (prioMap));        }    }    // allocate memory for the 1st thread    pCurThread = AllocMem (HEAP_THREAD);    DEBUGCHK (pCurThread);    dwCurThId = (DWORD) HNDLCreateHandle (&cinfThread, pCurThread, g_pprcNK) & ~1;    DEBUGCHK (dwCurThId);    InitThreadStruct (pCurThread, (HANDLE) dwCurThId, g_pprcNK, THREAD_RT_PRIORITY_ABOVE_NORMAL);    if (g_pOemGlobal->cbCoProcRegSize) {        DEBUGCHK (g_pOemGlobal->pfnInitCoProcRegs);        DEBUGCHK (g_pOemGlobal->pfnSaveCoProcRegs);        DEBUGCHK (g_pOemGlobal->pfnRestoreCoProcRegs);        // check the debug register related values.        if (g_pOemGlobal->cbCoProcRegSize > MAX_COPROCREGSIZE) {            g_pOemGlobal->cbCoProcRegSize = g_pOemGlobal->fSaveCoProcReg = 0;        } else {            PNAME pTmp = AllocName (g_pOemGlobal->cbCoProcRegSize);            DEBUGCHK (pTmp);            g_dwCoProcPool = pTmp->wPool;            FreeName (pTmp);        }    } else {        g_pOemGlobal->fSaveCoProcReg = FALSE;    }    DEBUGMSG (ZONE_SCHEDULE,(TEXT("cbCoProcRegSize = %d\r\n"), g_pOemGlobal->cbCoProcRegSize));    AddToDListHead (&g_pprcNK->thrdList, &pCurThread->thLink);    g_pprcNK->wThrdCnt ++;#ifdef SHx    SetCPUGlobals();    OEMCacheRangeFlush (0, 0, CACHE_SYNC_ALL);#endif    if (!OpenExecutable (NULL, TEXT("NK.EXE"), &g_pprcNK->oe, TOKEN_SYSTEM, NULL, 0)) {        LoadE32 (&g_pprcNK->oe, &g_pprcNK->e32, 0, 0, 0);        g_pprcNK->BasePtr = (LPVOID)g_pprcNK->e32.e32_vbase;        UpdateKmodVSize(&g_pprcNK->oe, &g_pprcNK->e32);    }        // create/setup stack    pStack = VMCreateStack (g_pprcNK, KRN_STACK_SIZE);    pCurThread->dwOrigBase = (DWORD) pStack;    pCurThread->dwOrigStkSize = KRN_STACK_SIZE;    pCurThread->tlsSecure = pCurThread->tlsNonSecure = pCurThread->tlsPtr = TLSPTR (pStack, KRN_STACK_SIZE);    pCurThread->hTok = TOKEN_SYSTEM;    // Save off the thread's program counter for getting its name later.    pCurThread->dwStartAddr = (DWORD) SystemStartupFunc;    MDSetupThread (pCurThread, (LPVOID)SystemStartupFunc, 0, TH_KMODE, 0);    CELOG_ThreadCreate(pCurThread, g_pprcNK, NULL);    MakeRun(pCurThread);    DEBUGMSG(ZONE_SCHEDULE,(TEXT("Scheduler: Created master thread %8.8lx\r\n"),pCurThread));}

    可以看到,这里开始了一个线程,线程处理函数为SystemStartupFunc(),其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c,实现代码如下:     

//------------------------------------------------------------------------------voidSystemStartupFunc(    ulong param    ){    HANDLE hTh;    // record PendEvent address for SetInterruptEvent    KInfoTable[KINX_PENDEVENTS] = (DWORD) &PendEvents1;    KernelInit2();    // adjust alarm resolution if it it's not in bound    if (g_pOemGlobal->dwAlarmResolution < MIN_NKALARMRESOLUTION_MSEC)        g_pOemGlobal->dwAlarmResolution = MIN_NKALARMRESOLUTION_MSEC;    else if (g_pOemGlobal->dwAlarmResolution > MAX_NKALARMRESOLUTION_MSEC)        g_pOemGlobal->dwAlarmResolution = MAX_NKALARMRESOLUTION_MSEC;        VERIFY (LoaderInit ());        // initialize the compiler /GS cookie - this must happen before other threads    // start running    __security_init_cookie();    PagePoolInit ();    // This can only be done after the loader initialization    LoggerInit();           // Initialization for CeLog, profiler, code-coverage, etc.    SysDebugInit ();        // initialize System Debugger (HW Debug stub, Kernel dump capture, SW Kernel Debug stub)    // do this now, so that we continue running after we've created the new thread#ifdef START_KERNEL_MONITOR_THREAD    hTh = CreateKernelThread(Monitor1,0,THREAD_RT_PRIORITY_ABOVE_NORMAL,0);    HNDLCloseHandle (g_pprcNK, hTh);#endif    pCleanupThread = pCurThread;    hAlarmThreadWakeup = NKCreateEvent(0,0,0,0);    DEBUGCHK(hAlarmThreadWakeup);    InitializeCriticalSection(&rtccs);    IntrEvents[SYSINTR_RTC_ALARM-SYSINTR_DEVICES] = LockIntrEvt (hAlarmThreadWakeup);    DEBUGCHK(IntrEvents[SYSINTR_RTC_ALARM-SYSINTR_DEVICES]->phdIntr);    // Give the OEM a final chance to do a more full-featured init before any    // apps are started    KernelIoctl (IOCTL_HAL_POSTINIT, NULL, 0, NULL, 0, NULL);    InitMsgQueue ();    InitWatchDog ();    // create the power handler event and guard thread    hEvtPwrHndlr = NKCreateEvent (NULL, FALSE, FALSE, NULL);    DEBUGCHK (hEvtPwrHndlr);    hTh = CreateKernelThread (PowerHandlerGuardThrd, NULL, THREAD_PWR_GUARD_PRIORITY, 0);    HNDLCloseHandle (g_pprcNK, hTh);    // dirty page event, initially set    hEvtDirtyPage = NKCreateEvent (NULL, FALSE, TRUE, NULL);    DEBUGCHK (hEvtDirtyPage);    // we don't want to waste a thread here (create a separate for cleaning dirty pages).    // Instead, RunApps thread will become "CleanDirtyPage" thread once filesys started    hTh = CreateKernelThread (RunApps,0,THREAD_RT_PRIORITY_NORMAL,0);    HNDLCloseHandle (g_pprcNK, hTh);#define ONE_DAY     86400000    while (1) {        KCall((PKFN)SetThreadBasePrio, pCurThread, dwNKAlarmThrdPrio);        NKWaitForSingleObject (hAlarmThreadWakeup, ONE_DAY);        NKRefreshKernelAlarm ();        PageOutIfNeeded();    }}

     这里创建了一个内核线程,处理函数为RunApps,继续跟踪RunApps,其实现在文件C:\WINCE600\PRIVATE\WINCEOS\COREOS\NK\KERNEL\kmisc.c中,代码如下:

DWORD WINAPIRunApps(    LPVOID param    ){    HMODULE hFilesys;    DEBUGMSG (ZONE_ENTRY, (L"RunApps started\r\n"));    CELOG_LaunchingFilesys();    hFilesys = (HMODULE) NKLoadLibraryEx (L"filesys.dll", MAKELONG (LOAD_LIBRARY_IN_KERNEL, LLIB_NO_PAGING), NULL);    if (hFilesys) {        FARPROC pfnMain = GetProcAddressA (hFilesys, (LPCSTR) 2);   // WinMain of filesys        HANDLE hFSReady, hTh;        DEBUGCHK (pfnMain);        hFSReady = NKCreateEvent (NULL, TRUE, FALSE, TEXT("SYSTEM/FSReady"));        hTh = CreateKernelThread ((LPTHREAD_START_ROUTINE)pfnMain, hFilesys, THREAD_RT_PRIORITY_NORMAL, 0);        DEBUGCHK (hTh && hFSReady);        HNDLCloseHandle (g_pprcNK, hTh);        // If pSignalStarted is NULL, we don't have filesys (tinykern). Don't bother waiting for it.        if (pSignalStarted) {            NKWaitForSingleObject (hFSReady, INFINITE);            DEBUGCHK (SystemAPISets[SH_FILESYS_APIS]);            // Initialize MUI-Resource loader (requires registry)            InitMUILanguages();            // Read system settings from registry            InitSystemSettings ();            // signal filesys that we're done            (* pSignalStarted) (0);        }        HNDLCloseHandle (g_pprcNK, hFSReady);       } else {        RETAILMSG (1, (L"Filesys doesn't exist, no app started\r\n"));    }    // instead of exiting, we're make this thread cleaning dirty pages in the background.    CleanPagesInTheBackground ();    // should've never returned    DEBUGCHK (0);    NKExitThread (0);    return 0;}
      终于启动filesys.dll了。这个过程简单说明一下,启动filesys.dll后等待其执行的情况,在完成了文件系统的相应的初始化之后,这里继续初始化MUI和系统设置,完成后再通知filesys这边的工作已经完成,filesys继续启动。这一部分的具体内容请参考MSDN,File System Boot Process:http://msdn.microsoft.com/en-us/library/aa912276.aspx。总之,filesys会完成WinCE的最后启动过程,包括gwes.dll和explorer.exe等。至此,WinCE6.0启动完成,如果有LCD且驱动能正常工作,现在就应该能看见可爱的WinCE6.0的界面了。

呵,没想到WinCE6.0的启动过程竟然这么繁长。不过,弄清楚这个启动流程对于移植BSP相当有好处。总结一下整个过程,如下图所示。    


     本文通过跟踪代码的方式,介绍了WinCE6.0的启动流程。流于表面了一点,很多细节应该进一步研究,以后再慢慢看吧。文中有不确切的地方,也请您不吝赐教.



原创粉丝点击