Linux内核最新的连续内存分配器(CMA)——避免预留大块内存

来源:互联网 发布:手机访问电脑软件 编辑:程序博客网 时间:2024/05/16 06:22

http://21cnbao.blog.51cto.com/109393/898846


在我们使用ARM等嵌入式Linux系统的时候,一个头疼的问题是GPU,Camera,HDMI等都需要预留大量连续内存,这部分内存平时不用, 但是一般的做法又必须先预留着。目前,Marek Szyprowski和Michal Nazarewicz实现了一套全新的Contiguous Memory Allocator。通过这套机制,我们可以做到不预留内存,这些内存平时是可用的,只有当需要的时候才被分配给Camera,HDMI等设备。下面分析 它的基本代码流程。

声明连续内存

内核启动过程中arch/arm/mm/init.c中的arm_memblock_init()会调用dma_contiguous_reserve(min(arm_dma_limit, arm_lowmem_limit));

该函数位于:drivers/base/dma-contiguous.c

/** * dma_contiguous_reserve() - reserve area for contiguous memory handling * @limit: End address of the reserved memory (optional, 0 for any). * * This function reserves memory from early allocator. It should be * called by arch specific code once the early allocator (memblock or bootmem) * has been activated and all other subsystems have already allocated/reserved * memory. */void __init dma_contiguous_reserve(phys_addr_t limit){        unsigned long selected_size = 0;        pr_debug("%s(limit %08lx)\n", __func__, (unsigned long)limit);        if (size_cmdline != -1) {                selected_size = size_cmdline;        } else {#ifdef CONFIG_CMA_SIZE_SEL_MBYTES                selected_size = size_bytes;#elif defined(CONFIG_CMA_SIZE_SEL_PERCENTAGE)                selected_size = cma_early_percent_memory();#elif defined(CONFIG_CMA_SIZE_SEL_MIN)                selected_size = min(size_bytes, cma_early_percent_memory());#elif defined(CONFIG_CMA_SIZE_SEL_MAX)                selected_size = max(size_bytes, cma_early_percent_memory());#endif        }           if (selected_size) {                pr_debug("%s: reserving %ld MiB for global area\n", __func__,                         selected_size / SZ_1M);                dma_declare_contiguous(NULL, selected_size, 0, limit);        }   };

其中的size_bytes定义为:

static const unsigned long size_bytes = CMA_SIZE_MBYTES * SZ_1M; 默认情况下,CMA_SIZE_MBYTES会被定义为16MB,来源于CONFIG_CMA_SIZE_MBYTES=16

->

int __init dma_declare_contiguous(struct device *dev, unsigned long size,                                  phys_addr_t base, phys_addr_t limit){        ...        /* Reserve memory */        if (base) {                if (memblock_is_region_reserved(base, size) ||                    memblock_reserve(base, size) < 0) {                        base = -EBUSY;                        goto err;                }        } else {                /*                 * Use __memblock_alloc_base() since                 * memblock_alloc_base() panic()s.                 */                phys_addr_t addr = __memblock_alloc_base(size, alignment, limit);                if (!addr) {                        base = -ENOMEM;                        goto err;                } else if (addr + size > ~(unsigned long)0) {                        memblock_free(addr, size);                        base = -EINVAL;                        base = -EINVAL;                        goto err;                } else {                        base = addr;                }        }        /*         * Each reserved area must be initialised later, when more kernel         * subsystems (like slab allocator) are available.         */        r->start = base;        r->size = size;        r->dev = dev;        cma_reserved_count++;        pr_info("CMA: reserved %ld MiB at %08lx\n", size / SZ_1M,                (unsigned long)base);        /* Architecture specific contiguous memory fixup. */        dma_contiguous_early_fixup(base, size);        return 0;err:        pr_err("CMA: failed to reserve %ld MiB\n", size / SZ_1M);        return base;} 

由此可见,连续内存区域也是在内核启动的早期,通过__memblock_alloc_base()拿到的。

另外:

drivers/base/dma-contiguous.c里面的core_initcall()会导致cma_init_reserved_areas()被调用:

static int __init cma_init_reserved_areas(void){        struct cma_reserved *r = cma_reserved;        unsigned i = cma_reserved_count;        pr_debug("%s()\n", __func__);        for (; i; --i, ++r) {                struct cma *cma;                cma = cma_create_area(PFN_DOWN(r->start),                                      r->size >> PAGE_SHIFT);                if (!IS_ERR(cma))                        dev_set_cma_area(r->dev, cma);        }        return 0;}core_initcall(cma_init_reserved_areas);

cma_create_area()会调用cma_activate_area(),cma_activate_area()函数则会针对每个page调用:

init_cma_reserved_pageblock(pfn_to_page(base_pfn));

这个函数则会通过set_pageblock_migratetype(page, MIGRATE_CMA)将页设置为MIGRATE_CMA类型的:

#ifdef CONFIG_CMA/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */void __init init_cma_reserved_pageblock(struct page *page){                                            unsigned i = pageblock_nr_pages;        struct page *p = page;                do {                __ClearPageReserved(p);                set_page_count(p, 0);        } while (++p, --i);                set_page_refcounted(page);        set_pageblock_migratetype(page, MIGRATE_CMA);        __free_pages(page, pageblock_order);        totalram_pages += pageblock_nr_pages;}       #endif

同时其中调用的__free_pages(page, pageblock_order);最终会调用到__free_one_page(page, zone, order, migratetype);


相关的page会被加到MIGRATE_CMA的free_list上面去:

list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);

 

申请连续内存

申请连续内存仍然使用标准的arch/arm/mm/dma-mapping.c中定义的dma_alloc_coherent()和dma_alloc_writecombine(),这二者会间接调用drivers/base/dma-contiguous.c中的

struct page *dma_alloc_from_contiguous(struct device *dev, int count,                                       unsigned int align)

->

 

struct page *dma_alloc_from_contiguous(struct device *dev, int count,                                       unsigned int align){       ...       for (;;) {                pageno = bitmap_find_next_zero_area(cma->bitmap, cma->count,                                                    start, count, mask);                if (pageno >= cma->count) {                        ret = -ENOMEM;                        goto error;                }                pfn = cma->base_pfn + pageno;                ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA);                if (ret == 0) {                        bitmap_set(cma->bitmap, pageno, count);                        break;                } else if (ret != -EBUSY) {                        goto error;                }                pr_debug("%s(): memory range at %p is busy, retrying\n",                         __func__, pfn_to_page(pfn));                /* try again with a bit different memory target */                start = pageno + mask + 1;        }       ...}

->

int alloc_contig_range(unsigned long start, unsigned long end,

                       unsigned migratetype)



需要隔离page,隔离page的作用通过代码的注释可以体现:

        /*         * What we do here is we mark all pageblocks in range as         * MIGRATE_ISOLATE.  Because of the way page allocator work, we         * align the range to MAX_ORDER pages so that page allocator         * won't try to merge buddies from different pageblocks and         * change MIGRATE_ISOLATE to some other migration type.         *         * Once the pageblocks are marked as MIGRATE_ISOLATE, we         * migrate the pages from an unaligned range (ie. pages that         * we are interested in).  This will put all the pages in         * range back to page allocator as MIGRATE_ISOLATE.         *         * When this is done, we take the pages in range from page         * allocator removing them from the buddy system.  This way         * page allocator will never consider using them.         *         * This lets us mark the pageblocks back as         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the         * MAX_ORDER aligned range but not in the unaligned, original         * range are put back to page allocator so that buddy can use         * them.          */                          ret = start_isolate_page_range(pfn_align_to_maxpage_down(start),                                       pfn_align_to_maxpage_up(end),                                       migratetype);

简单地说,就是把相关的page标记为MIGRATE_ISOLATE,这样buddy系统就不会再使用他们。

 

/*       * start_isolate_page_range() -- make page-allocation-type of range of pages * to be MIGRATE_ISOLATE. * @start_pfn: The lower PFN of the range to be isolated. * @end_pfn: The upper PFN of the range to be isolated. * @migratetype: migrate type to set in error recovery. * * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in * the range will never be allocated. Any free pages and pages freed in the * future will not be allocated again. * * start_pfn/end_pfn must be aligned to pageblock_order. * Returns 0 on success and -EBUSY if any part of range cannot be isolated. */int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,                             unsigned migratetype){        unsigned long pfn;        unsigned long undo_pfn;        struct page *page;        BUG_ON((start_pfn) & (pageblock_nr_pages - 1));        BUG_ON((end_pfn) & (pageblock_nr_pages - 1));        for (pfn = start_pfn;             pfn < end_pfn;             pfn += pageblock_nr_pages) {                page = __first_valid_page(pfn, pageblock_nr_pages);                if (page && set_migratetype_isolate(page)) {                        undo_pfn = pfn;                        goto undo;                }        }        return 0;undo:        for (pfn = start_pfn;             pfn < undo_pfn;             pfn += pageblock_nr_pages)                unset_migratetype_isolate(pfn_to_page(pfn), migratetype);        return -EBUSY;}

接下来调用__alloc_contig_migrate_range()进行页面隔离和迁移:

static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) {        /* This function is based on compact_zone() from compaction.c. */        unsigned long pfn = start;        unsigned int tries = 0;         int ret = 0;         struct compact_control cc = {                .nr_migratepages = 0,                 .order = -1,                .zone = page_zone(pfn_to_page(start)),                .sync = true,        };           INIT_LIST_HEAD(&cc.migratepages);        migrate_prep_local();        while (pfn < end || !list_empty(&cc.migratepages)) {                if (fatal_signal_pending(current)) {                        ret = -EINTR;                        break;                }                    if (list_empty(&cc.migratepages)) {                        cc.nr_migratepages = 0;                         pfn = isolate_migratepages_range(cc.zone, &cc,                                                          pfn, end);                        if (!pfn) {                                ret = -EINTR;                                break;                        }                            tries = 0;                 } else if (++tries == 5) {                         ret = ret < 0 ? ret : -EBUSY;                        break;                }                    ret = migrate_pages(&cc.migratepages,                                    __alloc_contig_migrate_alloc,                                    0, false, true);        }            putback_lru_pages(&cc.migratepages);        return ret > 0 ? 0 : ret; }

其中的函数migrate_pages()会完成页面的迁移,迁移过程中通过传入的__alloc_contig_migrate_alloc()申请新的page,并将老的page付给新的page:

int migrate_pages(struct list_head *from,                new_page_t get_new_page, unsigned long private, bool offlining,                bool sync){        int retry = 1;         int nr_failed = 0;         int pass = 0;         struct page *page;        struct page *page2;        int swapwrite = current->flags & PF_SWAPWRITE;        int rc;        if (!swapwrite)                current->flags |= PF_SWAPWRITE;        for(pass = 0; pass < 10 && retry; pass++) {                retry = 0;                 list_for_each_entry_safe(page, page2, from, lru) {                        cond_resched();                        rc = unmap_and_move(get_new_page, private,                                                page, pass > 2, offlining,                                                sync);                        switch(rc) {                        case -ENOMEM:                                goto out;                         case -EAGAIN:                                retry++;                                break;                        case 0:                                break;                        default:                                /* Permanent failure */                                nr_failed++;                                break;                        }                    }            }            rc = 0;...} 

其中的unmap_and_move()函数较为关键,它定义在mm/migrate.c中

/* * Obtain the lock on page, remove all ptes and migrate the page * to the newly allocated page in newpage. */static int unmap_and_move(new_page_t get_new_page, unsigned long private,            struct page *page, int force, bool offlining, bool sync){    int rc = 0;    int *result = NULL;    struct page *newpage = get_new_page(page, private, &result);    int remap_swapcache = 1;    int charge = 0;    struct mem_cgroup *mem = NULL;    struct anon_vma *anon_vma = NULL;    ...    /* charge against new page */    charge = mem_cgroup_prepare_migration(page, newpage, &mem);    ...    if (PageWriteback(page)) {        if (!force || !sync)            goto uncharge;        wait_on_page_writeback(page);    }    /*     * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,     * we cannot notice that anon_vma is freed while we migrates a page.     * This get_anon_vma() delays freeing anon_vma pointer until the end     * of migration. File cache pages are no problem because of page_lock()     * File Caches may use write_page() or lock_page() in migration, then,     * just care Anon page here.     */    if (PageAnon(page)) {        /*         * Only page_lock_anon_vma() understands the subtleties of         * getting a hold on an anon_vma from outside one of its mms.         */        anon_vma = page_lock_anon_vma(page);        if (anon_vma) {            /*             * Take a reference count on the anon_vma if the             * page is mapped so that it is guaranteed to             * exist when the page is remapped later             */            get_anon_vma(anon_vma);            page_unlock_anon_vma(anon_vma);        } else if (PageSwapCache(page)) {            /*             * We cannot be sure that the anon_vma of an unmapped             * swapcache page is safe to use because we don't             * know in advance if the VMA that this page belonged             * to still exists. If the VMA and others sharing the             * data have been freed, then the anon_vma could             * already be invalid.             *             * To avoid this possibility, swapcache pages get             * migrated but are not remapped when migration             * completes             */            remap_swapcache = 0;        } else {            goto uncharge;        }    }    ...    /* Establish migration ptes or remove ptes */    try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);skip_unmap:    if (!page_mapped(page))        rc = move_to_new_page(newpage, page, remap_swapcache);    if (rc && remap_swapcache)        remove_migration_ptes(page, page);    /* Drop an anon_vma reference if we took one */    if (anon_vma)        drop_anon_vma(anon_vma);uncharge:    if (!charge)        mem_cgroup_end_migration(mem, page, newpage, rc == 0);unlock:    unlock_page(page);move_newpage:    ...}

通过unmap_and_move(),老的page就被迁移过去新的page。

接下来要回收page,回收page的作用是,不至于因为拿了连续的内存后,系统变得内存饥饿:

->

        /*         * Reclaim enough pages to make sure that contiguous allocation         * will not starve the system.         */        __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);

->

/* * Trigger memory pressure bump to reclaim some pages in order to be able to * allocate 'count' pages in single page units. Does similar work as *__alloc_pages_slowpath() function. */static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count){        enum zone_type high_zoneidx = gfp_zone(gfp_mask);        struct zonelist *zonelist = node_zonelist(0, gfp_mask);        int did_some_progress = 0;        int order = 1;        unsigned long watermark;        /*         * Increase level of watermarks to force kswapd do his job         * to stabilise at new watermark level.         */        __update_cma_watermarks(zone, count);        /* Obey watermarks as if the page was being allocated */        watermark = low_wmark_pages(zone) + count;        while (!zone_watermark_ok(zone, 0, watermark, 0, 0)) {                wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));                did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,                                                      NULL);                if (!did_some_progress) {                        /* Exhausted what can be done so it's blamo time */                        out_of_memory(zonelist, gfp_mask, order, NULL);                }        }        /* Restore original watermark levels. */        __update_cma_watermarks(zone, -count);        return count;}

 

释放连续内存

内存释放的时候也比较简单,直接就是:

arch/arm/mm/dma-mapping.c:

void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)

->

arch/arm/mm/dma-mapping.c:

static void __free_from_contiguous(struct device *dev, struct page *page,                                   size_t size){        __dma_remap(page, size, pgprot_kernel);        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);}

->

bool dma_release_from_contiguous(struct device *dev, struct page *pages,                                 int count){        ...        free_contig_range(pfn, count);        ..}

->


void free_contig_range(unsigned long pfn, unsigned nr_pages){               for (; nr_pages--; ++pfn)                __free_page(pfn_to_page(pfn));}  

将page交还给buddy。

 

内核内存分配的migratetype

内核内存分配的时候,带的标志是GFP_,但是GFP_可以转化为migratetype:

static inline int allocflags_to_migratetype(gfp_t gfp_flags){        WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);        if (unlikely(page_group_by_mobility_disabled))                return MIGRATE_UNMOVABLE;        /* Group based on mobility */        return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |                ((gfp_flags & __GFP_RECLAIMABLE) != 0); }

之后申请内存的时候,会对比迁移类型匹配的free_list:

        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,                        zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,                        preferred_zone, migratetype);

另外,笔者也编写了一个测试程序,透过它随时测试CMA的功能:

/* * kernel module helper for testing CMA * * Licensed under GPLv2 or later. */#include <linux/module.h>#include <linux/device.h>#include <linux/fs.h>#include <linux/miscdevice.h>#include <linux/dma-mapping.h>#define CMA_NUM  10static struct device *cma_dev;static dma_addr_t dma_phys[CMA_NUM];static void *dma_virt[CMA_NUM];/* any read request will free coherent memory, eg. * cat /dev/cma_test */static ssize_tcma_test_read(struct file *file, char __user *buf, size_t count, loff_t *ppos){int i;for (i = 0; i < CMA_NUM; i++) {if (dma_virt[i]) {dma_free_coherent(cma_dev, (i + 1) * SZ_1M, dma_virt[i], dma_phys[i]);_dev_info(cma_dev, "free virt: %p phys: %p\n", dma_virt[i], (void *)dma_phys[i]);dma_virt[i] = NULL;break;}}return 0;}/* * any write request will alloc coherent memory, eg. * echo 0 > /dev/cma_test */static ssize_tcma_test_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos){int i;int ret;for (i = 0; i < CMA_NUM; i++) {if (!dma_virt[i]) {dma_virt[i] = dma_alloc_coherent(cma_dev, (i + 1) * SZ_1M, &dma_phys[i], GFP_KERNEL);if (dma_virt[i]) {void *p;/* touch every page in the allocated memory */for (p = dma_virt[i]; p <  dma_virt[i] + (i + 1) * SZ_1M; p += PAGE_SIZE)*(u32 *)p = 0;_dev_info(cma_dev, "alloc virt: %p phys: %p\n", dma_virt[i], (void *)dma_phys[i]);} else {dev_err(cma_dev, "no mem in CMA area\n");ret = -ENOMEM;}break;}}return count;}static const struct file_operations cma_test_fops = {.owner =    THIS_MODULE,.read  =    cma_test_read,.write =    cma_test_write,};static struct miscdevice cma_test_misc = {.name = "cma_test",.fops = &cma_test_fops,};static int __init cma_test_init(void){int ret = 0;ret = misc_register(&cma_test_misc);if (unlikely(ret)) {pr_err("failed to register cma test misc device!\n");return ret;}cma_dev = cma_test_misc.this_device;cma_dev->coherent_dma_mask = ~0;_dev_info(cma_dev, "registered.\n");return ret;}module_init(cma_test_init);static void __exit cma_test_exit(void){misc_deregister(&cma_test_misc);}module_exit(cma_test_exit);MODULE_LICENSE("GPL");MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>");MODULE_DESCRIPTION("kernel module to help the test of CMA");MODULE_ALIAS("CMA test");

申请内存:

# echo 0 > /dev/cma_test

释放内存:

# cat /dev/cma_test

参考链接:

[1] http://www.spinics.net/lists/arm-kernel/msg160854.html

[2] http://www.spinics.net/lists/arm-kernel/msg162063.html

[3] http://lwn.net/Articles/447405/


原创粉丝点击