java 源码 String

来源:互联网 发布:淘宝卖分享教程 编辑:程序博客网 时间:2024/05/01 04:42
/* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */package java.lang;import java.io.ObjectStreamField;import java.io.UnsupportedEncodingException;import java.nio.charset.Charset;import java.util.ArrayList;import java.util.Arrays;import java.util.Comparator;import java.util.Formatter;import java.util.Locale;import java.util.regex.Matcher;import java.util.regex.Pattern;import java.util.regex.PatternSyntaxException;/** * The <code>String</code> class represents character strings. All * string literals in Java programs, such as <code>"abc"</code>, are * implemented as instances of this class. * <p> * Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: * <p><blockquote><pre> *     String str = "abc"; * </pre></blockquote><p> * is equivalent to: * <p><blockquote><pre> *     char data[] = {'a', 'b', 'c'}; *     String str = new String(data); * </pre></blockquote><p> * Here are some more examples of how strings can be used: * <p><blockquote><pre> *     System.out.println("abc"); *     String cde = "cde"; *     System.out.println("abc" + cde); *     String c = "abc".substring(2,3); *     String d = cde.substring(1, 2); * </pre></blockquote> * <p> * The class <code>String</code> includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping is based on the Unicode Standard version * specified by the {@link java.lang.Character Character} class. * <p> * The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. String concatenation is implemented * through the <code>StringBuilder</code>(or <code>StringBuffer</code>) * class and its <code>append</code> method. * String conversions are implemented through the method * <code>toString</code>, defined by <code>Object</code> and * inherited by all classes in Java. For additional information on * string concatenation and conversion, see Gosling, Joy, and Steele, * <i>The Java Language Specification</i>. * * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * * <p>A <code>String</code> represents a string in the UTF-16 format * in which <em>supplementary characters</em> are represented by <em>surrogate * pairs</em> (see the section <a href="Character.html#unicode">Unicode * Character Representations</a> in the <code>Character</code> class for * more information). * Index values refer to <code>char</code> code units, so a supplementary * character uses two positions in a <code>String</code>. * <p>The <code>String</code> class provides methods for dealing with * Unicode code points (i.e., characters), in addition to those for * dealing with Unicode code units (i.e., <code>char</code> values). * * @author  Lee Boynton * @author  Arthur van Hoff * @author  Martin Buchholz * @author  Ulf Zibis * @see     java.lang.Object#toString() * @see     java.lang.StringBuffer * @see     java.lang.StringBuilder * @see     java.nio.charset.Charset * @since   JDK1.0 */public final class String    implements java.io.Serializable, Comparable<String>, CharSequence {    /** The value is used for character storage. */    private final char value[];    /** Cache the hash code for the string */    private int hash; // Default to 0    /** use serialVersionUID from JDK 1.0.2 for interoperability */    private static final long serialVersionUID = -6849794470754667710L;    /**     * Class String is special cased within the Serialization Stream Protocol.     *     * A String instance is written initially into an ObjectOutputStream in the     * following format:     * <pre>     *      <code>TC_STRING</code> (utf String)     * </pre>     * The String is written by method <code>DataOutput.writeUTF</code>.     * A new handle is generated to  refer to all future references to the     * string instance within the stream.     */    private static final ObjectStreamField[] serialPersistentFields =            new ObjectStreamField[0];    /**     * Initializes a newly created {@code String} object so that it represents     * an empty character sequence.  Note that use of this constructor is     * unnecessary since Strings are immutable.     */    public String() {        this.value = new char[0];    }    /**     * Initializes a newly created {@code String} object so that it represents     * the same sequence of characters as the argument; in other words, the     * newly created string is a copy of the argument string. Unless an     * explicit copy of {@code original} is needed, use of this constructor is     * unnecessary since Strings are immutable.     *     * @param  original     *         A {@code String}     */    public String(String original) {        this.value = original.value;        this.hash = original.hash;    }    /**     * Allocates a new {@code String} so that it represents the sequence of     * characters currently contained in the character array argument. The     * contents of the character array are copied; subsequent modification of     * the character array does not affect the newly created string.     *     * @param  value     *         The initial value of the string     */    public String(char value[]) {        this.value = Arrays.copyOf(value, value.length);    }    /**     * Allocates a new {@code String} that contains characters from a subarray     * of the character array argument. The {@code offset} argument is the     * index of the first character of the subarray and the {@code count}     * argument specifies the length of the subarray. The contents of the     * subarray are copied; subsequent modification of the character array does     * not affect the newly created string.     *     * @param  value     *         Array that is the source of characters     *     * @param  offset     *         The initial offset     *     * @param  count     *         The length     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code count} arguments index     *          characters outside the bounds of the {@code value} array     */    public String(char value[], int offset, int count) {        if (offset < 0) {            throw new StringIndexOutOfBoundsException(offset);        }        if (count < 0) {            throw new StringIndexOutOfBoundsException(count);        }        // Note: offset or count might be near -1>>>1.        if (offset > value.length - count) {            throw new StringIndexOutOfBoundsException(offset + count);        }        this.value = Arrays.copyOfRange(value, offset, offset+count);    }    /**     * Allocates a new {@code String} that contains characters from a subarray     * of the <a href="Character.html#unicode">Unicode code point</a> array     * argument.  The {@code offset} argument is the index of the first code     * point of the subarray and the {@code count} argument specifies the     * length of the subarray.  The contents of the subarray are converted to     * {@code char}s; subsequent modification of the {@code int} array does not     * affect the newly created string.     *     * @param  codePoints     *         Array that is the source of Unicode code points     *     * @param  offset     *         The initial offset     *     * @param  count     *         The length     *     * @throws  IllegalArgumentException     *          If any invalid Unicode code point is found in {@code     *          codePoints}     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code count} arguments index     *          characters outside the bounds of the {@code codePoints} array     *     * @since  1.5     */    public String(int[] codePoints, int offset, int count) {        if (offset < 0) {            throw new StringIndexOutOfBoundsException(offset);        }        if (count < 0) {            throw new StringIndexOutOfBoundsException(count);        }        // Note: offset or count might be near -1>>>1.        if (offset > codePoints.length - count) {            throw new StringIndexOutOfBoundsException(offset + count);        }        final int end = offset + count;        // Pass 1: Compute precise size of char[]        int n = count;        for (int i = offset; i < end; i++) {            int c = codePoints[i];            if (Character.isBmpCodePoint(c))                continue;            else if (Character.isValidCodePoint(c))                n++;            else throw new IllegalArgumentException(Integer.toString(c));        }        // Pass 2: Allocate and fill in char[]        final char[] v = new char[n];        for (int i = offset, j = 0; i < end; i++, j++) {            int c = codePoints[i];            if (Character.isBmpCodePoint(c))                v[j] = (char)c;            else                Character.toSurrogates(c, v, j++);        }        this.value = v;    }    /**     * Allocates a new {@code String} constructed from a subarray of an array     * of 8-bit integer values.     *     * <p> The {@code offset} argument is the index of the first byte of the     * subarray, and the {@code count} argument specifies the length of the     * subarray.     *     * <p> Each {@code byte} in the subarray is converted to a {@code char} as     * specified in the method above.     *     * @deprecated This method does not properly convert bytes into characters.     * As of JDK 1.1, the preferred way to do this is via the     * {@code String} constructors that take a {@link     * java.nio.charset.Charset}, charset name, or that use the platform's     * default charset.     *     * @param  ascii     *         The bytes to be converted to characters     *     * @param  hibyte     *         The top 8 bits of each 16-bit Unicode code unit     *     * @param  offset     *         The initial offset     * @param  count     *         The length     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} or {@code count} argument is invalid     *     * @see  #String(byte[], int)     * @see  #String(byte[], int, int, java.lang.String)     * @see  #String(byte[], int, int, java.nio.charset.Charset)     * @see  #String(byte[], int, int)     * @see  #String(byte[], java.lang.String)     * @see  #String(byte[], java.nio.charset.Charset)     * @see  #String(byte[])     */    @Deprecated    public String(byte ascii[], int hibyte, int offset, int count) {        checkBounds(ascii, offset, count);        char value[] = new char[count];        if (hibyte == 0) {            for (int i = count; i-- > 0;) {                value[i] = (char)(ascii[i + offset] & 0xff);            }        } else {            hibyte <<= 8;            for (int i = count; i-- > 0;) {                value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));            }        }        this.value = value;    }    /**     * Allocates a new {@code String} containing characters constructed from     * an array of 8-bit integer values. Each character <i>c</i>in the     * resulting string is constructed from the corresponding component     * <i>b</i> in the byte array such that:     *     * <blockquote><pre>     *     <b><i>c</i></b> == (char)(((hibyte & 0xff) << 8)     *                         | (<b><i>b</i></b> & 0xff))     * </pre></blockquote>     *     * @deprecated  This method does not properly convert bytes into     * characters.  As of JDK 1.1, the preferred way to do this is via the     * {@code String} constructors that take a {@link     * java.nio.charset.Charset}, charset name, or that use the platform's     * default charset.     *     * @param  ascii     *         The bytes to be converted to characters     *     * @param  hibyte     *         The top 8 bits of each 16-bit Unicode code unit     *     * @see  #String(byte[], int, int, java.lang.String)     * @see  #String(byte[], int, int, java.nio.charset.Charset)     * @see  #String(byte[], int, int)     * @see  #String(byte[], java.lang.String)     * @see  #String(byte[], java.nio.charset.Charset)     * @see  #String(byte[])     */    @Deprecated    public String(byte ascii[], int hibyte) {        this(ascii, hibyte, 0, ascii.length);    }    /* Common private utility method used to bounds check the byte array     * and requested offset & length values used by the String(byte[],..)     * constructors.     */    private static void checkBounds(byte[] bytes, int offset, int length) {        if (length < 0)            throw new StringIndexOutOfBoundsException(length);        if (offset < 0)            throw new StringIndexOutOfBoundsException(offset);        if (offset > bytes.length - length)            throw new StringIndexOutOfBoundsException(offset + length);    }    /**     * Constructs a new {@code String} by decoding the specified subarray of     * bytes using the specified charset.  The length of the new {@code String}     * is a function of the charset, and hence may not be equal to the length     * of the subarray.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the given charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  offset     *         The index of the first byte to decode     *     * @param  length     *         The number of bytes to decode     * @param  charsetName     *         The name of a supported {@linkplain java.nio.charset.Charset     *         charset}     *     * @throws  UnsupportedEncodingException     *          If the named charset is not supported     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code length} arguments index     *          characters outside the bounds of the {@code bytes} array     *     * @since  JDK1.1     */    public String(byte bytes[], int offset, int length, String charsetName)            throws UnsupportedEncodingException {        if (charsetName == null)            throw new NullPointerException("charsetName");        checkBounds(bytes, offset, length);        this.value = StringCoding.decode(charsetName, bytes, offset, length);    }    /**     * Constructs a new {@code String} by decoding the specified subarray of     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.     * The length of the new {@code String} is a function of the charset, and     * hence may not be equal to the length of the subarray.     *     * <p> This method always replaces malformed-input and unmappable-character     * sequences with this charset's default replacement string.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  offset     *         The index of the first byte to decode     *     * @param  length     *         The number of bytes to decode     *     * @param  charset     *         The {@linkplain java.nio.charset.Charset charset} to be used to     *         decode the {@code bytes}     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code length} arguments index     *          characters outside the bounds of the {@code bytes} array     *     * @since  1.6     */    public String(byte bytes[], int offset, int length, Charset charset) {        if (charset == null)            throw new NullPointerException("charset");        checkBounds(bytes, offset, length);        this.value =  StringCoding.decode(charset, bytes, offset, length);    }    /**     * Constructs a new {@code String} by decoding the specified array of bytes     * using the specified {@linkplain java.nio.charset.Charset charset}.  The     * length of the new {@code String} is a function of the charset, and hence     * may not be equal to the length of the byte array.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the given charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  charsetName     *         The name of a supported {@linkplain java.nio.charset.Charset     *         charset}     *     * @throws  UnsupportedEncodingException     *          If the named charset is not supported     *     * @since  JDK1.1     */    public String(byte bytes[], String charsetName)            throws UnsupportedEncodingException {        this(bytes, 0, bytes.length, charsetName);    }    /**     * Constructs a new {@code String} by decoding the specified array of     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.     * The length of the new {@code String} is a function of the charset, and     * hence may not be equal to the length of the byte array.     *     * <p> This method always replaces malformed-input and unmappable-character     * sequences with this charset's default replacement string.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  charset     *         The {@linkplain java.nio.charset.Charset charset} to be used to     *         decode the {@code bytes}     *     * @since  1.6     */    public String(byte bytes[], Charset charset) {        this(bytes, 0, bytes.length, charset);    }    /**     * Constructs a new {@code String} by decoding the specified subarray of     * bytes using the platform's default charset.  The length of the new     * {@code String} is a function of the charset, and hence may not be equal     * to the length of the subarray.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the default charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  offset     *         The index of the first byte to decode     *     * @param  length     *         The number of bytes to decode     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and the {@code length} arguments index     *          characters outside the bounds of the {@code bytes} array     *     * @since  JDK1.1     */    public String(byte bytes[], int offset, int length) {        checkBounds(bytes, offset, length);        this.value = StringCoding.decode(bytes, offset, length);    }    /**     * Constructs a new {@code String} by decoding the specified array of bytes     * using the platform's default charset.  The length of the new {@code     * String} is a function of the charset, and hence may not be equal to the     * length of the byte array.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the default charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @since  JDK1.1     */    public String(byte bytes[]) {        this(bytes, 0, bytes.length);    }    /**     * Allocates a new string that contains the sequence of characters     * currently contained in the string buffer argument. The contents of the     * string buffer are copied; subsequent modification of the string buffer     * does not affect the newly created string.     *     * @param  buffer     *         A {@code StringBuffer}     */    public String(StringBuffer buffer) {        synchronized(buffer) {            this.value = Arrays.copyOf(buffer.getValue(), buffer.length());        }    }    /**     * Allocates a new string that contains the sequence of characters     * currently contained in the string builder argument. The contents of the     * string builder are copied; subsequent modification of the string builder     * does not affect the newly created string.     *     * <p> This constructor is provided to ease migration to {@code     * StringBuilder}. Obtaining a string from a string builder via the {@code     * toString} method is likely to run faster and is generally preferred.     *     * @param   builder     *          A {@code StringBuilder}     *     * @since  1.5     */    public String(StringBuilder builder) {        this.value = Arrays.copyOf(builder.getValue(), builder.length());    }    /*    * Package private constructor which shares value array for speed.    * this constructor is always expected to be called with share==true.    * a separate constructor is needed because we already have a public    * String(char[]) constructor that makes a copy of the given char[].    */    String(char[] value, boolean share) {        // assert share : "unshared not supported";        this.value = value;    }    /**     * Package private constructor     *     * @deprecated Use {@link #String(char[],int,int)} instead.     */    @Deprecated    String(int offset, int count, char[] value) {        this(value, offset, count);    }    /**     * Returns the length of this string.     * The length is equal to the number of <a href="Character.html#unicode">Unicode     * code units</a> in the string.     *     * @return  the length of the sequence of characters represented by this     *          object.     */    public int length() {        return value.length;    }    /**     * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.     *     * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise     * <tt>false</tt>     *     * @since 1.6     */    public boolean isEmpty() {        return value.length == 0;    }    /**     * Returns the <code>char</code> value at the     * specified index. An index ranges from <code>0</code> to     * <code>length() - 1</code>. The first <code>char</code> value of the sequence     * is at index <code>0</code>, the next at index <code>1</code>,     * and so on, as for array indexing.     *     * <p>If the <code>char</code> value specified by the index is a     * <a href="Character.html#unicode">surrogate</a>, the surrogate     * value is returned.     *     * @param      index   the index of the <code>char</code> value.     * @return     the <code>char</code> value at the specified index of this string.     *             The first <code>char</code> value is at index <code>0</code>.     * @exception  IndexOutOfBoundsException  if the <code>index</code>     *             argument is negative or not less than the length of this     *             string.     */    public char charAt(int index) {        if ((index < 0) || (index >= value.length)) {            throw new StringIndexOutOfBoundsException(index);        }        return value[index];    }    /**     * Returns the character (Unicode code point) at the specified     * index. The index refers to <code>char</code> values     * (Unicode code units) and ranges from <code>0</code> to     * {@link #length()}<code> - 1</code>.     *     * <p> If the <code>char</code> value specified at the given index     * is in the high-surrogate range, the following index is less     * than the length of this <code>String</code>, and the     * <code>char</code> value at the following index is in the     * low-surrogate range, then the supplementary code point     * corresponding to this surrogate pair is returned. Otherwise,     * the <code>char</code> value at the given index is returned.     *     * @param      index the index to the <code>char</code> values     * @return     the code point value of the character at the     *             <code>index</code>     * @exception  IndexOutOfBoundsException  if the <code>index</code>     *             argument is negative or not less than the length of this     *             string.     * @since      1.5     */    public int codePointAt(int index) {        if ((index < 0) || (index >= value.length)) {            throw new StringIndexOutOfBoundsException(index);        }        return Character.codePointAtImpl(value, index, value.length);    }    /**     * Returns the character (Unicode code point) before the specified     * index. The index refers to <code>char</code> values     * (Unicode code units) and ranges from <code>1</code> to {@link     * CharSequence#length() length}.     *     * <p> If the <code>char</code> value at <code>(index - 1)</code>     * is in the low-surrogate range, <code>(index - 2)</code> is not     * negative, and the <code>char</code> value at <code>(index -     * 2)</code> is in the high-surrogate range, then the     * supplementary code point value of the surrogate pair is     * returned. If the <code>char</code> value at <code>index -     * 1</code> is an unpaired low-surrogate or a high-surrogate, the     * surrogate value is returned.     *     * @param     index the index following the code point that should be returned     * @return    the Unicode code point value before the given index.     * @exception IndexOutOfBoundsException if the <code>index</code>     *            argument is less than 1 or greater than the length     *            of this string.     * @since     1.5     */    public int codePointBefore(int index) {        int i = index - 1;        if ((i < 0) || (i >= value.length)) {            throw new StringIndexOutOfBoundsException(index);        }        return Character.codePointBeforeImpl(value, index, 0);    }    /**     * Returns the number of Unicode code points in the specified text     * range of this <code>String</code>. The text range begins at the     * specified <code>beginIndex</code> and extends to the     * <code>char</code> at index <code>endIndex - 1</code>. Thus the     * length (in <code>char</code>s) of the text range is     * <code>endIndex-beginIndex</code>. Unpaired surrogates within     * the text range count as one code point each.     *     * @param beginIndex the index to the first <code>char</code> of     * the text range.     * @param endIndex the index after the last <code>char</code> of     * the text range.     * @return the number of Unicode code points in the specified text     * range     * @exception IndexOutOfBoundsException if the     * <code>beginIndex</code> is negative, or <code>endIndex</code>     * is larger than the length of this <code>String</code>, or     * <code>beginIndex</code> is larger than <code>endIndex</code>.     * @since  1.5     */    public int codePointCount(int beginIndex, int endIndex) {        if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {            throw new IndexOutOfBoundsException();        }        return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);    }    /**     * Returns the index within this <code>String</code> that is     * offset from the given <code>index</code> by     * <code>codePointOffset</code> code points. Unpaired surrogates     * within the text range given by <code>index</code> and     * <code>codePointOffset</code> count as one code point each.     *     * @param index the index to be offset     * @param codePointOffset the offset in code points     * @return the index within this <code>String</code>     * @exception IndexOutOfBoundsException if <code>index</code>     *   is negative or larger then the length of this     *   <code>String</code>, or if <code>codePointOffset</code> is positive     *   and the substring starting with <code>index</code> has fewer     *   than <code>codePointOffset</code> code points,     *   or if <code>codePointOffset</code> is negative and the substring     *   before <code>index</code> has fewer than the absolute value     *   of <code>codePointOffset</code> code points.     * @since 1.5     */    public int offsetByCodePoints(int index, int codePointOffset) {        if (index < 0 || index > value.length) {            throw new IndexOutOfBoundsException();        }        return Character.offsetByCodePointsImpl(value, 0, value.length,                index, codePointOffset);    }    /**     * Copy characters from this string into dst starting at dstBegin.     * This method doesn't perform any range checking.     */    void getChars(char dst[], int dstBegin) {        System.arraycopy(value, 0, dst, dstBegin, value.length);    }    /**     * Copies characters from this string into the destination character     * array.     * <p>     * The first character to be copied is at index <code>srcBegin</code>;     * the last character to be copied is at index <code>srcEnd-1</code>     * (thus the total number of characters to be copied is     * <code>srcEnd-srcBegin</code>). The characters are copied into the     * subarray of <code>dst</code> starting at index <code>dstBegin</code>     * and ending at index:     * <p><blockquote><pre>     *     dstbegin + (srcEnd-srcBegin) - 1     * </pre></blockquote>     *     * @param      srcBegin   index of the first character in the string     *                        to copy.     * @param      srcEnd     index after the last character in the string     *                        to copy.     * @param      dst        the destination array.     * @param      dstBegin   the start offset in the destination array.     * @exception IndexOutOfBoundsException If any of the following     *            is true:     *            <ul><li><code>srcBegin</code> is negative.     *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>     *            <li><code>srcEnd</code> is greater than the length of this     *                string     *            <li><code>dstBegin</code> is negative     *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than     *                <code>dst.length</code></ul>     */    public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {        if (srcBegin < 0) {            throw new StringIndexOutOfBoundsException(srcBegin);        }        if (srcEnd > value.length) {            throw new StringIndexOutOfBoundsException(srcEnd);        }        if (srcBegin > srcEnd) {            throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);        }        System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);    }    /**     * Copies characters from this string into the destination byte array. Each     * byte receives the 8 low-order bits of the corresponding character. The     * eight high-order bits of each character are not copied and do not     * participate in the transfer in any way.     *     * <p> The first character to be copied is at index {@code srcBegin}; the     * last character to be copied is at index {@code srcEnd-1}.  The total     * number of characters to be copied is {@code srcEnd-srcBegin}. The     * characters, converted to bytes, are copied into the subarray of {@code     * dst} starting at index {@code dstBegin} and ending at index:     *     * <blockquote><pre>     *     dstbegin + (srcEnd-srcBegin) - 1     * </pre></blockquote>     *     * @deprecated  This method does not properly convert characters into     * bytes.  As of JDK 1.1, the preferred way to do this is via the     * {@link #getBytes()} method, which uses the platform's default charset.     *     * @param  srcBegin     *         Index of the first character in the string to copy     *     * @param  srcEnd     *         Index after the last character in the string to copy     *     * @param  dst     *         The destination array     *     * @param  dstBegin     *         The start offset in the destination array     *     * @throws  IndexOutOfBoundsException     *          If any of the following is true:     *          <ul>     *            <li> {@code srcBegin} is negative     *            <li> {@code srcBegin} is greater than {@code srcEnd}     *            <li> {@code srcEnd} is greater than the length of this String     *            <li> {@code dstBegin} is negative     *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code     *                 dst.length}     *          </ul>     */    @Deprecated    public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {        if (srcBegin < 0) {            throw new StringIndexOutOfBoundsException(srcBegin);        }        if (srcEnd > value.length) {            throw new StringIndexOutOfBoundsException(srcEnd);        }        if (srcBegin > srcEnd) {            throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);        }        int j = dstBegin;        int n = srcEnd;        int i = srcBegin;        char[] val = value;   /* avoid getfield opcode */        while (i < n) {            dst[j++] = (byte)val[i++];        }    }    /**     * Encodes this {@code String} into a sequence of bytes using the named     * charset, storing the result into a new byte array.     *     * <p> The behavior of this method when this string cannot be encoded in     * the given charset is unspecified.  The {@link     * java.nio.charset.CharsetEncoder} class should be used when more control     * over the encoding process is required.     *     * @param  charsetName     *         The name of a supported {@linkplain java.nio.charset.Charset     *         charset}     *     * @return  The resultant byte array     *     * @throws  UnsupportedEncodingException     *          If the named charset is not supported     *     * @since  JDK1.1     */    public byte[] getBytes(String charsetName)            throws UnsupportedEncodingException {        if (charsetName == null) throw new NullPointerException();        return StringCoding.encode(charsetName, value, 0, value.length);    }    /**     * Encodes this {@code String} into a sequence of bytes using the given     * {@linkplain java.nio.charset.Charset charset}, storing the result into a     * new byte array.     *     * <p> This method always replaces malformed-input and unmappable-character     * sequences with this charset's default replacement byte array.  The     * {@link java.nio.charset.CharsetEncoder} class should be used when more     * control over the encoding process is required.     *     * @param  charset     *         The {@linkplain java.nio.charset.Charset} to be used to encode     *         the {@code String}     *     * @return  The resultant byte array     *     * @since  1.6     */    public byte[] getBytes(Charset charset) {        if (charset == null) throw new NullPointerException();        return StringCoding.encode(charset, value, 0, value.length);    }    /**     * Encodes this {@code String} into a sequence of bytes using the     * platform's default charset, storing the result into a new byte array.     *     * <p> The behavior of this method when this string cannot be encoded in     * the default charset is unspecified.  The {@link     * java.nio.charset.CharsetEncoder} class should be used when more control     * over the encoding process is required.     *     * @return  The resultant byte array     *     * @since      JDK1.1     */    public byte[] getBytes() {        return StringCoding.encode(value, 0, value.length);    }    /**     * Compares this string to the specified object.  The result is {@code     * true} if and only if the argument is not {@code null} and is a {@code     * String} object that represents the same sequence of characters as this     * object.     *     * @param  anObject     *         The object to compare this {@code String} against     *     * @return  {@code true} if the given object represents a {@code String}     *          equivalent to this string, {@code false} otherwise     *     * @see  #compareTo(String)     * @see  #equalsIgnoreCase(String)     */    public boolean equals(Object anObject) {        if (this == anObject) {            return true;        }        if (anObject instanceof String) {            String anotherString = (String) anObject;            int n = value.length;            if (n == anotherString.value.length) {                char v1[] = value;                char v2[] = anotherString.value;                int i = 0;                while (n-- != 0) {                    if (v1[i] != v2[i])                            return false;                    i++;                }                return true;            }        }        return false;    }    /**     * Compares this string to the specified {@code StringBuffer}.  The result     * is {@code true} if and only if this {@code String} represents the same     * sequence of characters as the specified {@code StringBuffer}.     *     * @param  sb     *         The {@code StringBuffer} to compare this {@code String} against     *     * @return  {@code true} if this {@code String} represents the same     *          sequence of characters as the specified {@code StringBuffer},     *          {@code false} otherwise     *     * @since  1.4     */    public boolean contentEquals(StringBuffer sb) {        synchronized (sb) {            return contentEquals((CharSequence) sb);        }    }    /**     * Compares this string to the specified {@code CharSequence}.  The result     * is {@code true} if and only if this {@code String} represents the same     * sequence of char values as the specified sequence.     *     * @param  cs     *         The sequence to compare this {@code String} against     *     * @return  {@code true} if this {@code String} represents the same     *          sequence of char values as the specified sequence, {@code     *          false} otherwise     *     * @since  1.5     */    public boolean contentEquals(CharSequence cs) {        if (value.length != cs.length())            return false;        // Argument is a StringBuffer, StringBuilder        if (cs instanceof AbstractStringBuilder) {            char v1[] = value;            char v2[] = ((AbstractStringBuilder) cs).getValue();            int i = 0;            int n = value.length;            while (n-- != 0) {                if (v1[i] != v2[i])                    return false;                i++;            }            return true;        }        // Argument is a String        if (cs.equals(this))            return true;        // Argument is a generic CharSequence        char v1[] = value;        int i = 0;        int n = value.length;        while (n-- != 0) {            if (v1[i] != cs.charAt(i))                return false;            i++;        }        return true;    }    /**     * Compares this {@code String} to another {@code String}, ignoring case     * considerations.  Two strings are considered equal ignoring case if they     * are of the same length and corresponding characters in the two strings     * are equal ignoring case.     *     * <p> Two characters {@code c1} and {@code c2} are considered the same     * ignoring case if at least one of the following is true:     * <ul>     *   <li> The two characters are the same (as compared by the     *        {@code ==} operator)     *   <li> Applying the method {@link     *        java.lang.Character#toUpperCase(char)} to each character     *        produces the same result     *   <li> Applying the method {@link     *        java.lang.Character#toLowerCase(char)} to each character     *        produces the same result     * </ul>     *     * @param  anotherString     *         The {@code String} to compare this {@code String} against     *     * @return  {@code true} if the argument is not {@code null} and it     *          represents an equivalent {@code String} ignoring case; {@code     *          false} otherwise     *     * @see  #equals(Object)     */    public boolean equalsIgnoreCase(String anotherString) {        return (this == anotherString) ? true                : (anotherString != null)                && (anotherString.value.length == value.length)                && regionMatches(true, 0, anotherString, 0, value.length);    }    /**     * Compares two strings lexicographically.     * The comparison is based on the Unicode value of each character in     * the strings. The character sequence represented by this     * <code>String</code> object is compared lexicographically to the     * character sequence represented by the argument string. The result is     * a negative integer if this <code>String</code> object     * lexicographically precedes the argument string. The result is a     * positive integer if this <code>String</code> object lexicographically     * follows the argument string. The result is zero if the strings     * are equal; <code>compareTo</code> returns <code>0</code> exactly when     * the {@link #equals(Object)} method would return <code>true</code>.     * <p>     * This is the definition of lexicographic ordering. If two strings are     * different, then either they have different characters at some index     * that is a valid index for both strings, or their lengths are different,     * or both. If they have different characters at one or more index     * positions, let <i>k</i> be the smallest such index; then the string     * whose character at position <i>k</i> has the smaller value, as     * determined by using the < operator, lexicographically precedes the     * other string. In this case, <code>compareTo</code> returns the     * difference of the two character values at position <code>k</code> in     * the two string -- that is, the value:     * <blockquote><pre>     * this.charAt(k)-anotherString.charAt(k)     * </pre></blockquote>     * If there is no index position at which they differ, then the shorter     * string lexicographically precedes the longer string. In this case,     * <code>compareTo</code> returns the difference of the lengths of the     * strings -- that is, the value:     * <blockquote><pre>     * this.length()-anotherString.length()     * </pre></blockquote>     *     * @param   anotherString   the <code>String</code> to be compared.     * @return  the value <code>0</code> if the argument string is equal to     *          this string; a value less than <code>0</code> if this string     *          is lexicographically less than the string argument; and a     *          value greater than <code>0</code> if this string is     *          lexicographically greater than the string argument.     */    public int compareTo(String anotherString) {        int len1 = value.length;        int len2 = anotherString.value.length;        int lim = Math.min(len1, len2);        char v1[] = value;        char v2[] = anotherString.value;        int k = 0;        while (k < lim) {            char c1 = v1[k];            char c2 = v2[k];            if (c1 != c2) {                return c1 - c2;            }            k++;        }        return len1 - len2;    }    /**     * A Comparator that orders <code>String</code> objects as by     * <code>compareToIgnoreCase</code>. This comparator is serializable.     * <p>     * Note that this Comparator does <em>not</em> take locale into account,     * and will result in an unsatisfactory ordering for certain locales.     * The java.text package provides <em>Collators</em> to allow     * locale-sensitive ordering.     *     * @see     java.text.Collator#compare(String, String)     * @since   1.2     */    public static final Comparator<String> CASE_INSENSITIVE_ORDER                                         = new CaseInsensitiveComparator();    private static class CaseInsensitiveComparator            implements Comparator<String>, java.io.Serializable {        // use serialVersionUID from JDK 1.2.2 for interoperability        private static final long serialVersionUID = 8575799808933029326L;        public int compare(String s1, String s2) {            int n1 = s1.length();            int n2 = s2.length();            int min = Math.min(n1, n2);            for (int i = 0; i < min; i++) {                char c1 = s1.charAt(i);                char c2 = s2.charAt(i);                if (c1 != c2) {                    c1 = Character.toUpperCase(c1);                    c2 = Character.toUpperCase(c2);                    if (c1 != c2) {                        c1 = Character.toLowerCase(c1);                        c2 = Character.toLowerCase(c2);                        if (c1 != c2) {                            // No overflow because of numeric promotion                            return c1 - c2;                        }                    }                }            }            return n1 - n2;        }    }    /**     * Compares two strings lexicographically, ignoring case     * differences. This method returns an integer whose sign is that of     * calling <code>compareTo</code> with normalized versions of the strings     * where case differences have been eliminated by calling     * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on     * each character.     * <p>     * Note that this method does <em>not</em> take locale into account,     * and will result in an unsatisfactory ordering for certain locales.     * The java.text package provides <em>collators</em> to allow     * locale-sensitive ordering.     *     * @param   str   the <code>String</code> to be compared.     * @return  a negative integer, zero, or a positive integer as the     *          specified String is greater than, equal to, or less     *          than this String, ignoring case considerations.     * @see     java.text.Collator#compare(String, String)     * @since   1.2     */    public int compareToIgnoreCase(String str) {        return CASE_INSENSITIVE_ORDER.compare(this, str);    }    /**     * Tests if two string regions are equal.     * <p>     * A substring of this <tt>String</tt> object is compared to a substring     * of the argument other. The result is true if these substrings     * represent identical character sequences. The substring of this     * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>     * and has length <tt>len</tt>. The substring of other to be compared     * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The     * result is <tt>false</tt> if and only if at least one of the following     * is true:     * <ul><li><tt>toffset</tt> is negative.     * <li><tt>ooffset</tt> is negative.     * <li><tt>toffset+len</tt> is greater than the length of this     * <tt>String</tt> object.     * <li><tt>ooffset+len</tt> is greater than the length of the other     * argument.     * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>     * such that:     * <tt>this.charAt(toffset+<i>k</i>) != other.charAt(ooffset+<i>k</i>)</tt>     * </ul>     *     * @param   toffset   the starting offset of the subregion in this string.     * @param   other     the string argument.     * @param   ooffset   the starting offset of the subregion in the string     *                    argument.     * @param   len       the number of characters to compare.     * @return  <code>true</code> if the specified subregion of this string     *          exactly matches the specified subregion of the string argument;     *          <code>false</code> otherwise.     */    public boolean regionMatches(int toffset, String other, int ooffset,            int len) {        char ta[] = value;        int to = toffset;        char pa[] = other.value;        int po = ooffset;        // Note: toffset, ooffset, or len might be near -1>>>1.        if ((ooffset < 0) || (toffset < 0)                || (toffset > (long)value.length - len)                || (ooffset > (long)other.value.length - len)) {            return false;        }        while (len-- > 0) {            if (ta[to++] != pa[po++]) {                return false;            }        }        return true;    }    /**     * Tests if two string regions are equal.     * <p>     * A substring of this <tt>String</tt> object is compared to a substring     * of the argument <tt>other</tt>. The result is <tt>true</tt> if these     * substrings represent character sequences that are the same, ignoring     * case if and only if <tt>ignoreCase</tt> is true. The substring of     * this <tt>String</tt> object to be compared begins at index     * <tt>toffset</tt> and has length <tt>len</tt>. The substring of     * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and     * has length <tt>len</tt>. The result is <tt>false</tt> if and only if     * at least one of the following is true:     * <ul><li><tt>toffset</tt> is negative.     * <li><tt>ooffset</tt> is negative.     * <li><tt>toffset+len</tt> is greater than the length of this     * <tt>String</tt> object.     * <li><tt>ooffset+len</tt> is greater than the length of the other     * argument.     * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative     * integer <i>k</i> less than <tt>len</tt> such that:     * <blockquote><pre>     * this.charAt(toffset+k) != other.charAt(ooffset+k)     * </pre></blockquote>     * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative     * integer <i>k</i> less than <tt>len</tt> such that:     * <blockquote><pre>     * Character.toLowerCase(this.charAt(toffset+k)) !=     Character.toLowerCase(other.charAt(ooffset+k))     * </pre></blockquote>     * and:     * <blockquote><pre>     * Character.toUpperCase(this.charAt(toffset+k)) !=     *         Character.toUpperCase(other.charAt(ooffset+k))     * </pre></blockquote>     * </ul>     *     * @param   ignoreCase   if <code>true</code>, ignore case when comparing     *                       characters.     * @param   toffset      the starting offset of the subregion in this     *                       string.     * @param   other        the string argument.     * @param   ooffset      the starting offset of the subregion in the string     *                       argument.     * @param   len          the number of characters to compare.     * @return  <code>true</code> if the specified subregion of this string     *          matches the specified subregion of the string argument;     *          <code>false</code> otherwise. Whether the matching is exact     *          or case insensitive depends on the <code>ignoreCase</code>     *          argument.     */    public boolean regionMatches(boolean ignoreCase, int toffset,            String other, int ooffset, int len) {        char ta[] = value;        int to = toffset;        char pa[] = other.value;        int po = ooffset;        // Note: toffset, ooffset, or len might be near -1>>>1.        if ((ooffset < 0) || (toffset < 0)                || (toffset > (long)value.length - len)                || (ooffset > (long)other.value.length - len)) {            return false;        }        while (len-- > 0) {            char c1 = ta[to++];            char c2 = pa[po++];            if (c1 == c2) {                continue;            }            if (ignoreCase) {                // If characters don't match but case may be ignored,                // try converting both characters to uppercase.                // If the results match, then the comparison scan should                // continue.                char u1 = Character.toUpperCase(c1);                char u2 = Character.toUpperCase(c2);                if (u1 == u2) {                    continue;                }                // Unfortunately, conversion to uppercase does not work properly                // for the Georgian alphabet, which has strange rules about case                // conversion.  So we need to make one last check before                // exiting.                if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {                    continue;                }            }            return false;        }        return true;    }    /**     * Tests if the substring of this string beginning at the     * specified index starts with the specified prefix.     *     * @param   prefix    the prefix.     * @param   toffset   where to begin looking in this string.     * @return  <code>true</code> if the character sequence represented by the     *          argument is a prefix of the substring of this object starting     *          at index <code>toffset</code>; <code>false</code> otherwise.     *          The result is <code>false</code> if <code>toffset</code> is     *          negative or greater than the length of this     *          <code>String</code> object; otherwise the result is the same     *          as the result of the expression     *          <pre>     *          this.substring(toffset).startsWith(prefix)     *          </pre>     */    public boolean startsWith(String prefix, int toffset) {        char ta[] = value;        int to = toffset;        char pa[] = prefix.value;        int po = 0;        int pc = prefix.value.length;        // Note: toffset might be near -1>>>1.        if ((toffset < 0) || (toffset > value.length - pc)) {            return false;        }        while (--pc >= 0) {            if (ta[to++] != pa[po++]) {                return false;            }        }        return true;    }    /**     * Tests if this string starts with the specified prefix.     *     * @param   prefix   the prefix.     * @return  <code>true</code> if the character sequence represented by the     *          argument is a prefix of the character sequence represented by     *          this string; <code>false</code> otherwise.     *          Note also that <code>true</code> will be returned if the     *          argument is an empty string or is equal to this     *          <code>String</code> object as determined by the     *          {@link #equals(Object)} method.     * @since   1. 0     */    public boolean startsWith(String prefix) {        return startsWith(prefix, 0);    }    /**     * Tests if this string ends with the specified suffix.     *     * @param   suffix   the suffix.     * @return  <code>true</code> if the character sequence represented by the     *          argument is a suffix of the character sequence represented by     *          this object; <code>false</code> otherwise. Note that the     *          result will be <code>true</code> if the argument is the     *          empty string or is equal to this <code>String</code> object     *          as determined by the {@link #equals(Object)} method.     */    public boolean endsWith(String suffix) {        return startsWith(suffix, value.length - suffix.value.length);    }    /**     * Returns a hash code for this string. The hash code for a     * <code>String</code> object is computed as     * <blockquote><pre>     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]     * </pre></blockquote>     * using <code>int</code> arithmetic, where <code>s[i]</code> is the     * <i>i</i>th character of the string, <code>n</code> is the length of     * the string, and <code>^</code> indicates exponentiation.     * (The hash value of the empty string is zero.)     *     * @return  a hash code value for this object.     */    public int hashCode() {        int h = hash;        if (h == 0 && value.length > 0) {            char val[] = value;            for (int i = 0; i < value.length; i++) {                h = 31 * h + val[i];            }            hash = h;        }        return h;    }    /**     * Returns the index within this string of the first occurrence of     * the specified character. If a character with value     * <code>ch</code> occurs in the character sequence represented by     * this <code>String</code> object, then the index (in Unicode     * code units) of the first such occurrence is returned. For     * values of <code>ch</code> in the range from 0 to 0xFFFF     * (inclusive), this is the smallest value <i>k</i> such that:     * <blockquote><pre>     * this.charAt(<i>k</i>) == ch     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * smallest value <i>k</i> such that:     * <blockquote><pre>     * this.codePointAt(<i>k</i>) == ch     * </pre></blockquote>     * is true. In either case, if no such character occurs in this     * string, then <code>-1</code> is returned.     *     * @param   ch   a character (Unicode code point).     * @return  the index of the first occurrence of the character in the     *          character sequence represented by this object, or     *          <code>-1</code> if the character does not occur.     */    public int indexOf(int ch) {        return indexOf(ch, 0);    }    /**     * Returns the index within this string of the first occurrence of the     * specified character, starting the search at the specified index.     * <p>     * If a character with value <code>ch</code> occurs in the     * character sequence represented by this <code>String</code>     * object at an index no smaller than <code>fromIndex</code>, then     * the index of the first such occurrence is returned. For values     * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),     * this is the smallest value <i>k</i> such that:     * <blockquote><pre>     * (this.charAt(<i>k</i>) == ch) && (<i>k</i> >= fromIndex)     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * smallest value <i>k</i> such that:     * <blockquote><pre>     * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> >= fromIndex)     * </pre></blockquote>     * is true. In either case, if no such character occurs in this     * string at or after position <code>fromIndex</code>, then     * <code>-1</code> is returned.     *     * <p>     * There is no restriction on the value of <code>fromIndex</code>. If it     * is negative, it has the same effect as if it were zero: this entire     * string may be searched. If it is greater than the length of this     * string, it has the same effect as if it were equal to the length of     * this string: <code>-1</code> is returned.     *     * <p>All indices are specified in <code>char</code> values     * (Unicode code units).     *     * @param   ch          a character (Unicode code point).     * @param   fromIndex   the index to start the search from.     * @return  the index of the first occurrence of the character in the     *          character sequence represented by this object that is greater     *          than or equal to <code>fromIndex</code>, or <code>-1</code>     *          if the character does not occur.     */    public int indexOf(int ch, int fromIndex) {        final int max = value.length;        if (fromIndex < 0) {            fromIndex = 0;        } else if (fromIndex >= max) {            // Note: fromIndex might be near -1>>>1.            return -1;        }        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {            // handle most cases here (ch is a BMP code point or a            // negative value (invalid code point))            final char[] value = this.value;            for (int i = fromIndex; i < max; i++) {                if (value[i] == ch) {                    return i;                }            }            return -1;        } else {            return indexOfSupplementary(ch, fromIndex);        }    }    /**     * Handles (rare) calls of indexOf with a supplementary character.     */    private int indexOfSupplementary(int ch, int fromIndex) {        if (Character.isValidCodePoint(ch)) {            final char[] value = this.value;            final char hi = Character.highSurrogate(ch);            final char lo = Character.lowSurrogate(ch);            final int max = value.length - 1;            for (int i = fromIndex; i < max; i++) {                if (value[i] == hi && value[i + 1] == lo) {                    return i;                }            }        }        return -1;    }    /**     * Returns the index within this string of the last occurrence of     * the specified character. For values of <code>ch</code> in the     * range from 0 to 0xFFFF (inclusive), the index (in Unicode code     * units) returned is the largest value <i>k</i> such that:     * <blockquote><pre>     * this.charAt(<i>k</i>) == ch     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * largest value <i>k</i> such that:     * <blockquote><pre>     * this.codePointAt(<i>k</i>) == ch     * </pre></blockquote>     * is true.  In either case, if no such character occurs in this     * string, then <code>-1</code> is returned.  The     * <code>String</code> is searched backwards starting at the last     * character.     *     * @param   ch   a character (Unicode code point).     * @return  the index of the last occurrence of the character in the     *          character sequence represented by this object, or     *          <code>-1</code> if the character does not occur.     */    public int lastIndexOf(int ch) {        return lastIndexOf(ch, value.length - 1);    }    /**     * Returns the index within this string of the last occurrence of     * the specified character, searching backward starting at the     * specified index. For values of <code>ch</code> in the range     * from 0 to 0xFFFF (inclusive), the index returned is the largest     * value <i>k</i> such that:     * <blockquote><pre>     * (this.charAt(<i>k</i>) == ch) && (<i>k</i> <= fromIndex)     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * largest value <i>k</i> such that:     * <blockquote><pre>     * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> <= fromIndex)     * </pre></blockquote>     * is true. In either case, if no such character occurs in this     * string at or before position <code>fromIndex</code>, then     * <code>-1</code> is returned.     *     * <p>All indices are specified in <code>char</code> values     * (Unicode code units).     *     * @param   ch          a character (Unicode code point).     * @param   fromIndex   the index to start the search from. There is no     *          restriction on the value of <code>fromIndex</code>. If it is     *          greater than or equal to the length of this string, it has     *          the same effect as if it were equal to one less than the     *          length of this string: this entire string may be searched.     *          If it is negative, it has the same effect as if it were -1:     *          -1 is returned.     * @return  the index of the last occurrence of the character in the     *          character sequence represented by this object that is less     *          than or equal to <code>fromIndex</code>, or <code>-1</code>     *          if the character does not occur before that point.     */    public int lastIndexOf(int ch, int fromIndex) {        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {            // handle most cases here (ch is a BMP code point or a            // negative value (invalid code point))            final char[] value = this.value;            int i = Math.min(fromIndex, value.length - 1);            for (; i >= 0; i--) {                if (value[i] == ch) {                    return i;                }            }            return -1;        } else {            return lastIndexOfSupplementary(ch, fromIndex);        }    }    /**     * Handles (rare) calls of lastIndexOf with a supplementary character.     */    private int lastIndexOfSupplementary(int ch, int fromIndex) {        if (Character.isValidCodePoint(ch)) {            final char[] value = this.value;            char hi = Character.highSurrogate(ch);            char lo = Character.lowSurrogate(ch);            int i = Math.min(fromIndex, value.length - 2);            for (; i >= 0; i--) {                if (value[i] == hi && value[i + 1] == lo) {                    return i;                }            }        }        return -1;    }    /**     * Returns the index within this string of the first occurrence of the     * specified substring.     *     * <p>The returned index is the smallest value <i>k</i> for which:     * <blockquote><pre>     * this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str   the substring to search for.     * @return  the index of the first occurrence of the specified substring,     *          or {@code -1} if there is no such occurrence.     */    public int indexOf(String str) {        return indexOf(str, 0);    }    /**     * Returns the index within this string of the first occurrence of the     * specified substring, starting at the specified index.     *     * <p>The returned index is the smallest value <i>k</i> for which:     * <blockquote><pre>     * <i>k</i> >= fromIndex && this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str         the substring to search for.     * @param   fromIndex   the index from which to start the search.     * @return  the index of the first occurrence of the specified substring,     *          starting at the specified index,     *          or {@code -1} if there is no such occurrence.     */    public int indexOf(String str, int fromIndex) {        return indexOf(value, 0, value.length,                str.value, 0, str.value.length, fromIndex);    }    /**     * Code shared by String and StringBuffer to do searches. The     * source is the character array being searched, and the target     * is the string being searched for.     *     * @param   source       the characters being searched.     * @param   sourceOffset offset of the source string.     * @param   sourceCount  count of the source string.     * @param   target       the characters being searched for.     * @param   targetOffset offset of the target string.     * @param   targetCount  count of the target string.     * @param   fromIndex    the index to begin searching from.     */    static int indexOf(char[] source, int sourceOffset, int sourceCount,            char[] target, int targetOffset, int targetCount,            int fromIndex) {        if (fromIndex >= sourceCount) {            return (targetCount == 0 ? sourceCount : -1);        }        if (fromIndex < 0) {            fromIndex = 0;        }        if (targetCount == 0) {            return fromIndex;        }        char first = target[targetOffset];        int max = sourceOffset + (sourceCount - targetCount);        for (int i = sourceOffset + fromIndex; i <= max; i++) {            /* Look for first character. */            if (source[i] != first) {                while (++i <= max && source[i] != first);            }            /* Found first character, now look at the rest of v2 */            if (i <= max) {                int j = i + 1;                int end = j + targetCount - 1;                for (int k = targetOffset + 1; j < end && source[j]                        == target[k]; j++, k++);                if (j == end) {                    /* Found whole string. */                    return i - sourceOffset;                }            }        }        return -1;    }    /**     * Returns the index within this string of the last occurrence of the     * specified substring.  The last occurrence of the empty string ""     * is considered to occur at the index value {@code this.length()}.     *     * <p>The returned index is the largest value <i>k</i> for which:     * <blockquote><pre>     * this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str   the substring to search for.     * @return  the index of the last occurrence of the specified substring,     *          or {@code -1} if there is no such occurrence.     */    public int lastIndexOf(String str) {        return lastIndexOf(str, value.length);    }    /**     * Returns the index within this string of the last occurrence of the     * specified substring, searching backward starting at the specified index.     *     * <p>The returned index is the largest value <i>k</i> for which:     * <blockquote><pre>     * <i>k</i> <= fromIndex && this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str         the substring to search for.     * @param   fromIndex   the index to start the search from.     * @return  the index of the last occurrence of the specified substring,     *          searching backward from the specified index,     *          or {@code -1} if there is no such occurrence.     */    public int lastIndexOf(String str, int fromIndex) {        return lastIndexOf(value, 0, value.length,                str.value, 0, str.value.length, fromIndex);    }    /**     * Code shared by String and StringBuffer to do searches. The     * source is the character array being searched, and the target     * is the string being searched for.     *     * @param   source       the characters being searched.     * @param   sourceOffset offset of the source string.     * @param   sourceCount  count of the source string.     * @param   target       the characters being searched for.     * @param   targetOffset offset of the target string.     * @param   targetCount  count of the target string.     * @param   fromIndex    the index to begin searching from.     */    static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,            char[] target, int targetOffset, int targetCount,            int fromIndex) {        /*         * Check arguments; return immediately where possible. For         * consistency, don't check for null str.         */        int rightIndex = sourceCount - targetCount;        if (fromIndex < 0) {            return -1;        }        if (fromIndex > rightIndex) {            fromIndex = rightIndex;        }        /* Empty string always matches. */        if (targetCount == 0) {            return fromIndex;        }        int strLastIndex = targetOffset + targetCount - 1;        char strLastChar = target[strLastIndex];        int min = sourceOffset + targetCount - 1;        int i = min + fromIndex;        startSearchForLastChar:        while (true) {            while (i >= min && source[i] != strLastChar) {                i--;            }            if (i < min) {                return -1;            }            int j = i - 1;            int start = j - (targetCount - 1);            int k = strLastIndex - 1;            while (j > start) {                if (source[j--] != target[k--]) {                    i--;                    continue startSearchForLastChar;                }            }            return start - sourceOffset + 1;        }    }    /**     * Returns a new string that is a substring of this string. The     * substring begins with the character at the specified index and     * extends to the end of this string. <p>     * Examples:     * <blockquote><pre>     * "unhappy".substring(2) returns "happy"     * "Harbison".substring(3) returns "bison"     * "emptiness".substring(9) returns "" (an empty string)     * </pre></blockquote>     *     * @param      beginIndex   the beginning index, inclusive.     * @return     the specified substring.     * @exception  IndexOutOfBoundsException  if     *             <code>beginIndex</code> is negative or larger than the     *             length of this <code>String</code> object.     */    public String substring(int beginIndex) {        if (beginIndex < 0) {            throw new StringIndexOutOfBoundsException(beginIndex);        }        int subLen = value.length - beginIndex;        if (subLen < 0) {            throw new StringIndexOutOfBoundsException(subLen);        }        return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);    }    /**     * Returns a new string that is a substring of this string. The     * substring begins at the specified <code>beginIndex</code> and     * extends to the character at index <code>endIndex - 1</code>.     * Thus the length of the substring is <code>endIndex-beginIndex</code>.     * <p>     * Examples:     * <blockquote><pre>     * "hamburger".substring(4, 8) returns "urge"     * "smiles".substring(1, 5) returns "mile"     * </pre></blockquote>     *     * @param      beginIndex   the beginning index, inclusive.     * @param      endIndex     the ending index, exclusive.     * @return     the specified substring.     * @exception  IndexOutOfBoundsException  if the     *             <code>beginIndex</code> is negative, or     *             <code>endIndex</code> is larger than the length of     *             this <code>String</code> object, or     *             <code>beginIndex</code> is larger than     *             <code>endIndex</code>.     */    public String substring(int beginIndex, int endIndex) {        if (beginIndex < 0) {            throw new StringIndexOutOfBoundsException(beginIndex);        }        if (endIndex > value.length) {            throw new StringIndexOutOfBoundsException(endIndex);        }        int subLen = endIndex - beginIndex;        if (subLen < 0) {            throw new StringIndexOutOfBoundsException(subLen);        }        return ((beginIndex == 0) && (endIndex == value.length)) ? this                : new String(value, beginIndex, subLen);    }    /**     * Returns a new character sequence that is a subsequence of this sequence.     *     * <p> An invocation of this method of the form     *     * <blockquote><pre>     * str.subSequence(begin, end)</pre></blockquote>     *     * behaves in exactly the same way as the invocation     *     * <blockquote><pre>     * str.substring(begin, end)</pre></blockquote>     *     * This method is defined so that the <tt>String</tt> class can implement     * the {@link CharSequence} interface. </p>     *     * @param      beginIndex   the begin index, inclusive.     * @param      endIndex     the end index, exclusive.     * @return     the specified subsequence.     *     * @throws  IndexOutOfBoundsException     *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,     *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,     *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>     *     * @since 1.4     * @spec JSR-51     */    public CharSequence subSequence(int beginIndex, int endIndex) {        return this.substring(beginIndex, endIndex);    }    /**     * Concatenates the specified string to the end of this string.     * <p>     * If the length of the argument string is <code>0</code>, then this     * <code>String</code> object is returned. Otherwise, a new     * <code>String</code> object is created, representing a character     * sequence that is the concatenation of the character sequence     * represented by this <code>String</code> object and the character     * sequence represented by the argument string.<p>     * Examples:     * <blockquote><pre>     * "cares".concat("s") returns "caress"     * "to".concat("get").concat("her") returns "together"     * </pre></blockquote>     *     * @param   str   the <code>String</code> that is concatenated to the end     *                of this <code>String</code>.     * @return  a string that represents the concatenation of this object's     *          characters followed by the string argument's characters.     */    public String concat(String str) {        int otherLen = str.length();        if (otherLen == 0) {            return this;        }        int len = value.length;        char buf[] = Arrays.copyOf(value, len + otherLen);        str.getChars(buf, len);        return new String(buf, true);    }    /**     * Returns a new string resulting from replacing all occurrences of     * <code>oldChar</code> in this string with <code>newChar</code>.     * <p>     * If the character <code>oldChar</code> does not occur in the     * character sequence represented by this <code>String</code> object,     * then a reference to this <code>String</code> object is returned.     * Otherwise, a new <code>String</code> object is created that     * represents a character sequence identical to the character sequence     * represented by this <code>String</code> object, except that every     * occurrence of <code>oldChar</code> is replaced by an occurrence     * of <code>newChar</code>.     * <p>     * Examples:     * <blockquote><pre>     * "mesquite in your cellar".replace('e', 'o')     *         returns "mosquito in your collar"     * "the war of baronets".replace('r', 'y')     *         returns "the way of bayonets"     * "sparring with a purple porpoise".replace('p', 't')     *         returns "starring with a turtle tortoise"     * "JonL".replace('q', 'x') returns "JonL" (no change)     * </pre></blockquote>     *     * @param   oldChar   the old character.     * @param   newChar   the new character.     * @return  a string derived from this string by replacing every     *          occurrence of <code>oldChar</code> with <code>newChar</code>.     */    public String replace(char oldChar, char newChar) {        if (oldChar != newChar) {            int len = value.length;            int i = -1;            char[] val = value; /* avoid getfield opcode */            while (++i < len) {                if (val[i] == oldChar) {                    break;                }            }            if (i < len) {                char buf[] = new char[len];                for (int j = 0; j < i; j++) {                    buf[j] = val[j];                }                while (i < len) {                    char c = val[i];                    buf[i] = (c == oldChar) ? newChar : c;                    i++;                }                return new String(buf, true);            }        }        return this;    }    /**     * Tells whether or not this string matches the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a>.     *     * <p> An invocation of this method of the form     * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the     * same result as the expression     *     * <blockquote><tt> {@link java.util.regex.Pattern}.{@link     * java.util.regex.Pattern#matches(String,CharSequence)     * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>     *     * @param   regex     *          the regular expression to which this string is to be matched     *     * @return  <tt>true</tt> if, and only if, this string matches the     *          given regular expression     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public boolean matches(String regex) {        return Pattern.matches(regex, this);    }    /**     * Returns true if and only if this string contains the specified     * sequence of char values.     *     * @param s the sequence to search for     * @return true if this string contains <code>s</code>, false otherwise     * @throws NullPointerException if <code>s</code> is <code>null</code>     * @since 1.5     */    public boolean contains(CharSequence s) {        return indexOf(s.toString()) > -1;    }    /**     * Replaces the first substring of this string that matches the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a> with the     * given replacement.     *     * <p> An invocation of this method of the form     * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>     * yields exactly the same result as the expression     *     * <blockquote><tt>     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile     * compile}(</tt><i>regex</i><tt>).{@link     * java.util.regex.Pattern#matcher(java.lang.CharSequence)     * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst     * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>     *     *<p>     * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the     * replacement string may cause the results to be different than if it were     * being treated as a literal replacement string; see     * {@link java.util.regex.Matcher#replaceFirst}.     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special     * meaning of these characters, if desired.     *     * @param   regex     *          the regular expression to which this string is to be matched     * @param   replacement     *          the string to be substituted for the first match     *     * @return  The resulting <tt>String</tt>     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String replaceFirst(String regex, String replacement) {        return Pattern.compile(regex).matcher(this).replaceFirst(replacement);    }    /**     * Replaces each substring of this string that matches the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a> with the     * given replacement.     *     * <p> An invocation of this method of the form     * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>     * yields exactly the same result as the expression     *     * <blockquote><tt>     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile     * compile}(</tt><i>regex</i><tt>).{@link     * java.util.regex.Pattern#matcher(java.lang.CharSequence)     * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll     * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>     *     *<p>     * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the     * replacement string may cause the results to be different than if it were     * being treated as a literal replacement string; see     * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special     * meaning of these characters, if desired.     *     * @param   regex     *          the regular expression to which this string is to be matched     * @param   replacement     *          the string to be substituted for each match     *     * @return  The resulting <tt>String</tt>     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String replaceAll(String regex, String replacement) {        return Pattern.compile(regex).matcher(this).replaceAll(replacement);    }    /**     * Replaces each substring of this string that matches the literal target     * sequence with the specified literal replacement sequence. The     * replacement proceeds from the beginning of the string to the end, for     * example, replacing "aa" with "b" in the string "aaa" will result in     * "ba" rather than "ab".     *     * @param  target The sequence of char values to be replaced     * @param  replacement The replacement sequence of char values     * @return  The resulting string     * @throws NullPointerException if <code>target</code> or     *         <code>replacement</code> is <code>null</code>.     * @since 1.5     */    public String replace(CharSequence target, CharSequence replacement) {        return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(                this).replaceAll(Matcher.quoteReplacement(replacement.toString()));    }    /**     * Splits this string around matches of the given     * <a href="../util/regex/Pattern.html#sum">regular expression</a>.     *     * <p> The array returned by this method contains each substring of this     * string that is terminated by another substring that matches the given     * expression or is terminated by the end of the string.  The substrings in     * the array are in the order in which they occur in this string.  If the     * expression does not match any part of the input then the resulting array     * has just one element, namely this string.     *     * <p> The <tt>limit</tt> parameter controls the number of times the     * pattern is applied and therefore affects the length of the resulting     * array.  If the limit <i>n</i> is greater than zero then the pattern     * will be applied at most <i>n</i> - 1 times, the array's     * length will be no greater than <i>n</i>, and the array's last entry     * will contain all input beyond the last matched delimiter.  If <i>n</i>     * is non-positive then the pattern will be applied as many times as     * possible and the array can have any length.  If <i>n</i> is zero then     * the pattern will be applied as many times as possible, the array can     * have any length, and trailing empty strings will be discarded.     *     * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the     * following results with these parameters:     *     * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">     * <tr>     *     <th>Regex</th>     *     <th>Limit</th>     *     <th>Result</th>     * </tr>     * <tr><td align=center>:</td>     *     <td align=center>2</td>     *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>     * <tr><td align=center>:</td>     *     <td align=center>5</td>     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>     * <tr><td align=center>:</td>     *     <td align=center>-2</td>     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td align=center>5</td>     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td align=center>-2</td>     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td align=center>0</td>     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>     * </table></blockquote>     *     * <p> An invocation of this method of the form     * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt> <i>n</i><tt>)</tt>     * yields the same result as the expression     *     * <blockquote>     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile     * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link     * java.util.regex.Pattern#split(java.lang.CharSequence,int)     * split}<tt>(</tt><i>str</i><tt>,</tt> <i>n</i><tt>)</tt>     * </blockquote>     *     *     * @param  regex     *         the delimiting regular expression     *     * @param  limit     *         the result threshold, as described above     *     * @return  the array of strings computed by splitting this string     *          around matches of the given regular expression     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String[] split(String regex, int limit) {        /* fastpath if the regex is a         (1)one-char String and this character is not one of the            RegEx's meta characters ".$|()[{^?*+\\", or         (2)two-char String and the first char is the backslash and            the second is not the ascii digit or ascii letter.         */        char ch = 0;        if (((regex.value.length == 1 &&             ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||             (regex.length() == 2 &&              regex.charAt(0) == '\\' &&              (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&              ((ch-'a')|('z'-ch)) < 0 &&              ((ch-'A')|('Z'-ch)) < 0)) &&            (ch < Character.MIN_HIGH_SURROGATE ||             ch > Character.MAX_LOW_SURROGATE))        {            int off = 0;            int next = 0;            boolean limited = limit > 0;            ArrayList<String> list = new ArrayList<>();            while ((next = indexOf(ch, off)) != -1) {                if (!limited || list.size() < limit - 1) {                    list.add(substring(off, next));                    off = next + 1;                } else {    // last one                    //assert (list.size() == limit - 1);                    list.add(substring(off, value.length));                    off = value.length;                    break;                }            }            // If no match was found, return this            if (off == 0)                return new String[]{this};            // Add remaining segment            if (!limited || list.size() < limit)                list.add(substring(off, value.length));            // Construct result            int resultSize = list.size();            if (limit == 0)                while (resultSize > 0 && list.get(resultSize - 1).length() == 0)                    resultSize--;            String[] result = new String[resultSize];            return list.subList(0, resultSize).toArray(result);        }        return Pattern.compile(regex).split(this, limit);    }    /**     * Splits this string around matches of the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a>.     *     * <p> This method works as if by invoking the two-argument {@link     * #split(String, int) split} method with the given expression and a limit     * argument of zero.  Trailing empty strings are therefore not included in     * the resulting array.     *     * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following     * results with these expressions:     *     * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">     * <tr>     *  <th>Regex</th>     *  <th>Result</th>     * </tr>     * <tr><td align=center>:</td>     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>     * </table></blockquote>     *     *     * @param  regex     *         the delimiting regular expression     *     * @return  the array of strings computed by splitting this string     *          around matches of the given regular expression     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String[] split(String regex) {        return split(regex, 0);    }    /**     * Converts all of the characters in this <code>String</code> to lower     * case using the rules of the given <code>Locale</code>.  Case mapping is based     * on the Unicode Standard version specified by the {@link java.lang.Character Character}     * class. Since case mappings are not always 1:1 char mappings, the resulting     * <code>String</code> may be a different length than the original <code>String</code>.     * <p>     * Examples of lowercase  mappings are in the following table:     * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">     * <tr>     *   <th>Language Code of Locale</th>     *   <th>Upper Case</th>     *   <th>Lower Case</th>     *   <th>Description</th>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0130</td>     *   <td>\u0069</td>     *   <td>capital letter I with dot above -> small letter i</td>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0049</td>     *   <td>\u0131</td>     *   <td>capital letter I -> small letter dotless i </td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td>French Fries</td>     *   <td>french fries</td>     *   <td>lowercased all chars in String</td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">     *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">     *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>     *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">     *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">     *       <img src="doc-files/sigma1.gif" alt="sigma"></td>     *   <td>lowercased all chars in String</td>     * </tr>     * </table>     *     * @param locale use the case transformation rules for this locale     * @return the <code>String</code>, converted to lowercase.     * @see     java.lang.String#toLowerCase()     * @see     java.lang.String#toUpperCase()     * @see     java.lang.String#toUpperCase(Locale)     * @since   1.1     */    public String toLowerCase(Locale locale) {        if (locale == null) {            throw new NullPointerException();        }        int firstUpper;        final int len = value.length;        /* Now check if there are any characters that need to be changed. */        scan: {            for (firstUpper = 0 ; firstUpper < len; ) {                char c = value[firstUpper];                if ((c >= Character.MIN_HIGH_SURROGATE)                        && (c <= Character.MAX_HIGH_SURROGATE)) {                    int supplChar = codePointAt(firstUpper);                    if (supplChar != Character.toLowerCase(supplChar)) {                        break scan;                    }                    firstUpper += Character.charCount(supplChar);                } else {                    if (c != Character.toLowerCase(c)) {                        break scan;                    }                    firstUpper++;                }            }            return this;        }        char[] result = new char[len];        int resultOffset = 0;  /* result may grow, so i+resultOffset                                * is the write location in result */        /* Just copy the first few lowerCase characters. */        System.arraycopy(value, 0, result, 0, firstUpper);        String lang = locale.getLanguage();        boolean localeDependent =                (lang == "tr" || lang == "az" || lang == "lt");        char[] lowerCharArray;        int lowerChar;        int srcChar;        int srcCount;        for (int i = firstUpper; i < len; i += srcCount) {            srcChar = (int)value[i];            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE                    && (char)srcChar <= Character.MAX_HIGH_SURROGATE) {                srcChar = codePointAt(i);                srcCount = Character.charCount(srcChar);            } else {                srcCount = 1;            }            if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA                lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);            } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT                lowerChar = Character.ERROR;            } else {                lowerChar = Character.toLowerCase(srcChar);            }            if ((lowerChar == Character.ERROR)                    || (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {                if (lowerChar == Character.ERROR) {                    if (!localeDependent && srcChar == '\u0130') {                        lowerCharArray =                                ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);                    } else {                        lowerCharArray =                                ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);                    }                } else if (srcCount == 2) {                    resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;                    continue;                } else {                    lowerCharArray = Character.toChars(lowerChar);                }                /* Grow result if needed */                int mapLen = lowerCharArray.length;                if (mapLen > srcCount) {                    char[] result2 = new char[result.length + mapLen - srcCount];                    System.arraycopy(result, 0, result2, 0, i + resultOffset);                    result = result2;                }                for (int x = 0; x < mapLen; ++x) {                    result[i + resultOffset + x] = lowerCharArray[x];                }                resultOffset += (mapLen - srcCount);            } else {                result[i + resultOffset] = (char)lowerChar;            }        }        return new String(result, 0, len + resultOffset);    }    /**     * Converts all of the characters in this <code>String</code> to lower     * case using the rules of the default locale. This is equivalent to calling     * <code>toLowerCase(Locale.getDefault())</code>.     * <p>     * <b>Note:</b> This method is locale sensitive, and may produce unexpected     * results if used for strings that are intended to be interpreted locale     * independently.     * Examples are programming language identifiers, protocol keys, and HTML     * tags.     * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale     * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the     * LATIN SMALL LETTER DOTLESS I character.     * To obtain correct results for locale insensitive strings, use     * <code>toLowerCase(Locale.ENGLISH)</code>.     * <p>     * @return  the <code>String</code>, converted to lowercase.     * @see     java.lang.String#toLowerCase(Locale)     */    public String toLowerCase() {        return toLowerCase(Locale.getDefault());    }    /**     * Converts all of the characters in this <code>String</code> to upper     * case using the rules of the given <code>Locale</code>. Case mapping is based     * on the Unicode Standard version specified by the {@link java.lang.Character Character}     * class. Since case mappings are not always 1:1 char mappings, the resulting     * <code>String</code> may be a different length than the original <code>String</code>.     * <p>     * Examples of locale-sensitive and 1:M case mappings are in the following table.     * <p>     * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">     * <tr>     *   <th>Language Code of Locale</th>     *   <th>Lower Case</th>     *   <th>Upper Case</th>     *   <th>Description</th>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0069</td>     *   <td>\u0130</td>     *   <td>small letter i -> capital letter I with dot above</td>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0131</td>     *   <td>\u0049</td>     *   <td>small letter dotless i -> capital letter I</td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td>\u00df</td>     *   <td>\u0053 \u0053</td>     *   <td>small letter sharp s -> two letters: SS</td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td>Fahrvergnügen</td>     *   <td>FAHRVERGNÜGEN</td>     *   <td></td>     * </tr>     * </table>     * @param locale use the case transformation rules for this locale     * @return the <code>String</code>, converted to uppercase.     * @see     java.lang.String#toUpperCase()     * @see     java.lang.String#toLowerCase()     * @see     java.lang.String#toLowerCase(Locale)     * @since   1.1     */    public String toUpperCase(Locale locale) {        if (locale == null) {            throw new NullPointerException();        }        int firstLower;        final int len = value.length;        /* Now check if there are any characters that need to be changed. */        scan: {           for (firstLower = 0 ; firstLower < len; ) {                int c = (int)value[firstLower];                int srcCount;                if ((c >= Character.MIN_HIGH_SURROGATE)                        && (c <= Character.MAX_HIGH_SURROGATE)) {                    c = codePointAt(firstLower);                    srcCount = Character.charCount(c);                } else {                    srcCount = 1;                }                int upperCaseChar = Character.toUpperCaseEx(c);                if ((upperCaseChar == Character.ERROR)                        || (c != upperCaseChar)) {                    break scan;                }                firstLower += srcCount;            }            return this;        }        char[] result = new char[len]; /* may grow */        int resultOffset = 0;  /* result may grow, so i+resultOffset         * is the write location in result */        /* Just copy the first few upperCase characters. */        System.arraycopy(value, 0, result, 0, firstLower);        String lang = locale.getLanguage();        boolean localeDependent =                (lang == "tr" || lang == "az" || lang == "lt");        char[] upperCharArray;        int upperChar;        int srcChar;        int srcCount;        for (int i = firstLower; i < len; i += srcCount) {            srcChar = (int)value[i];            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {                srcChar = codePointAt(i);                srcCount = Character.charCount(srcChar);            } else {                srcCount = 1;            }            if (localeDependent) {                upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);            } else {                upperChar = Character.toUpperCaseEx(srcChar);            }            if ((upperChar == Character.ERROR)                    || (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {                if (upperChar == Character.ERROR) {                    if (localeDependent) {                        upperCharArray =                                ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);                    } else {                        upperCharArray = Character.toUpperCaseCharArray(srcChar);                    }                } else if (srcCount == 2) {                    resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;                    continue;                } else {                    upperCharArray = Character.toChars(upperChar);                }                /* Grow result if needed */                int mapLen = upperCharArray.length;                if (mapLen > srcCount) {                    char[] result2 = new char[result.length + mapLen - srcCount];                    System.arraycopy(result, 0, result2, 0, i + resultOffset);                    result = result2;                }                for (int x = 0; x < mapLen; ++x) {                    result[i + resultOffset + x] = upperCharArray[x];                }                resultOffset += (mapLen - srcCount);            } else {                result[i + resultOffset] = (char)upperChar;            }        }        return new String(result, 0, len + resultOffset);    }    /**     * Converts all of the characters in this <code>String</code> to upper     * case using the rules of the default locale. This method is equivalent to     * <code>toUpperCase(Locale.getDefault())</code>.     * <p>     * <b>Note:</b> This method is locale sensitive, and may produce unexpected     * results if used for strings that are intended to be interpreted locale     * independently.     * Examples are programming language identifiers, protocol keys, and HTML     * tags.     * For instance, <code>"title".toUpperCase()</code> in a Turkish locale     * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the     * LATIN CAPITAL LETTER I WITH DOT ABOVE character.     * To obtain correct results for locale insensitive strings, use     * <code>toUpperCase(Locale.ENGLISH)</code>.     * <p>     * @return  the <code>String</code>, converted to uppercase.     * @see     java.lang.String#toUpperCase(Locale)     */    public String toUpperCase() {        return toUpperCase(Locale.getDefault());    }    /**     * Returns a copy of the string, with leading and trailing whitespace     * omitted.     * <p>     * If this <code>String</code> object represents an empty character     * sequence, or the first and last characters of character sequence     * represented by this <code>String</code> object both have codes     * greater than <code>'\u0020'</code> (the space character), then a     * reference to this <code>String</code> object is returned.     * <p>     * Otherwise, if there is no character with a code greater than     * <code>'\u0020'</code> in the string, then a new     * <code>String</code> object representing an empty string is created     * and returned.     * <p>     * Otherwise, let <i>k</i> be the index of the first character in the     * string whose code is greater than <code>'\u0020'</code>, and let     * <i>m</i> be the index of the last character in the string whose code     * is greater than <code>'\u0020'</code>. A new <code>String</code>     * object is created, representing the substring of this string that     * begins with the character at index <i>k</i> and ends with the     * character at index <i>m</i>-that is, the result of     * <code>this.substring(<i>k</i>, <i>m</i>+1)</code>.     * <p>     * This method may be used to trim whitespace (as defined above) from     * the beginning and end of a string.     *     * @return  A copy of this string with leading and trailing white     *          space removed, or this string if it has no leading or     *          trailing white space.     */    public String trim() {        int len = value.length;        int st = 0;        char[] val = value;    /* avoid getfield opcode */        while ((st < len) && (val[st] <= ' ')) {            st++;        }        while ((st < len) && (val[len - 1] <= ' ')) {            len--;        }        return ((st > 0) || (len < value.length)) ? substring(st, len) : this;    }    /**     * This object (which is already a string!) is itself returned.     *     * @return  the string itself.     */    public String toString() {        return this;    }    /**     * Converts this string to a new character array.     *     * @return  a newly allocated character array whose length is the length     *          of this string and whose contents are initialized to contain     *          the character sequence represented by this string.     */    public char[] toCharArray() {        // Cannot use Arrays.copyOf because of class initialization order issues        char result[] = new char[value.length];        System.arraycopy(value, 0, result, 0, value.length);        return result;    }    /**     * Returns a formatted string using the specified format string and     * arguments.     *     * <p> The locale always used is the one returned by {@link     * java.util.Locale#getDefault() Locale.getDefault()}.     *     * @param  format     *         A <a href="../util/Formatter.html#syntax">format string</a>     *     * @param  args     *         Arguments referenced by the format specifiers in the format     *         string.  If there are more arguments than format specifiers, the     *         extra arguments are ignored.  The number of arguments is     *         variable and may be zero.  The maximum number of arguments is     *         limited by the maximum dimension of a Java array as defined by     *         <cite>The Java™ Virtual Machine Specification</cite>.     *         The behaviour on a     *         <tt>null</tt> argument depends on the <a     *         href="../util/Formatter.html#syntax">conversion</a>.     *     * @throws  IllegalFormatException     *          If a format string contains an illegal syntax, a format     *          specifier that is incompatible with the given arguments,     *          insufficient arguments given the format string, or other     *          illegal conditions.  For specification of all possible     *          formatting errors, see the <a     *          href="../util/Formatter.html#detail">Details</a> section of the     *          formatter class specification.     *     * @throws  NullPointerException     *          If the <tt>format</tt> is <tt>null</tt>     *     * @return  A formatted string     *     * @see  java.util.Formatter     * @since  1.5     */    public static String format(String format, Object... args) {        return new Formatter().format(format, args).toString();    }    /**     * Returns a formatted string using the specified locale, format string,     * and arguments.     *     * @param  l     *         The {@linkplain java.util.Locale locale} to apply during     *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization     *         is applied.     *     * @param  format     *         A <a href="../util/Formatter.html#syntax">format string</a>     *     * @param  args     *         Arguments referenced by the format specifiers in the format     *         string.  If there are more arguments than format specifiers, the     *         extra arguments are ignored.  The number of arguments is     *         variable and may be zero.  The maximum number of arguments is     *         limited by the maximum dimension of a Java array as defined by     *         <cite>The Java™ Virtual Machine Specification</cite>.     *         The behaviour on a     *         <tt>null</tt> argument depends on the <a     *         href="../util/Formatter.html#syntax">conversion</a>.     *     * @throws  IllegalFormatException     *          If a format string contains an illegal syntax, a format     *          specifier that is incompatible with the given arguments,     *          insufficient arguments given the format string, or other     *          illegal conditions.  For specification of all possible     *          formatting errors, see the <a     *          href="../util/Formatter.html#detail">Details</a> section of the     *          formatter class specification     *     * @throws  NullPointerException     *          If the <tt>format</tt> is <tt>null</tt>     *     * @return  A formatted string     *     * @see  java.util.Formatter     * @since  1.5     */    public static String format(Locale l, String format, Object... args) {        return new Formatter(l).format(format, args).toString();    }    /**     * Returns the string representation of the <code>Object</code> argument.     *     * @param   obj   an <code>Object</code>.     * @return  if the argument is <code>null</code>, then a string equal to     *          <code>"null"</code>; otherwise, the value of     *          <code>obj.toString()</code> is returned.     * @see     java.lang.Object#toString()     */    public static String valueOf(Object obj) {        return (obj == null) ? "null" : obj.toString();    }    /**     * Returns the string representation of the <code>char</code> array     * argument. The contents of the character array are copied; subsequent     * modification of the character array does not affect the newly     * created string.     *     * @param   data   a <code>char</code> array.     * @return  a newly allocated string representing the same sequence of     *          characters contained in the character array argument.     */    public static String valueOf(char data[]) {        return new String(data);    }    /**     * Returns the string representation of a specific subarray of the     * <code>char</code> array argument.     * <p>     * The <code>offset</code> argument is the index of the first     * character of the subarray. The <code>count</code> argument     * specifies the length of the subarray. The contents of the subarray     * are copied; subsequent modification of the character array does not     * affect the newly created string.     *     * @param   data     the character array.     * @param   offset   the initial offset into the value of the     *                  <code>String</code>.     * @param   count    the length of the value of the <code>String</code>.     * @return  a string representing the sequence of characters contained     *          in the subarray of the character array argument.     * @exception IndexOutOfBoundsException if <code>offset</code> is     *          negative, or <code>count</code> is negative, or     *          <code>offset+count</code> is larger than     *          <code>data.length</code>.     */    public static String valueOf(char data[], int offset, int count) {        return new String(data, offset, count);    }    /**     * Returns a String that represents the character sequence in the     * array specified.     *     * @param   data     the character array.     * @param   offset   initial offset of the subarray.     * @param   count    length of the subarray.     * @return  a <code>String</code> that contains the characters of the     *          specified subarray of the character array.     */    public static String copyValueOf(char data[], int offset, int count) {        // All public String constructors now copy the data.        return new String(data, offset, count);    }    /**     * Returns a String that represents the character sequence in the     * array specified.     *     * @param   data   the character array.     * @return  a <code>String</code> that contains the characters of the     *          character array.     */    public static String copyValueOf(char data[]) {        return new String(data);    }    /**     * Returns the string representation of the <code>boolean</code> argument.     *     * @param   b   a <code>boolean</code>.     * @return  if the argument is <code>true</code>, a string equal to     *          <code>"true"</code> is returned; otherwise, a string equal to     *          <code>"false"</code> is returned.     */    public static String valueOf(boolean b) {        return b ? "true" : "false";    }    /**     * Returns the string representation of the <code>char</code>     * argument.     *     * @param   c   a <code>char</code>.     * @return  a string of length <code>1</code> containing     *          as its single character the argument <code>c</code>.     */    public static String valueOf(char c) {        char data[] = {c};        return new String(data, true);    }    /**     * Returns the string representation of the <code>int</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Integer.toString</code> method of one argument.     *     * @param   i   an <code>int</code>.     * @return  a string representation of the <code>int</code> argument.     * @see     java.lang.Integer#toString(int, int)     */    public static String valueOf(int i) {        return Integer.toString(i);    }    /**     * Returns the string representation of the <code>long</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Long.toString</code> method of one argument.     *     * @param   l   a <code>long</code>.     * @return  a string representation of the <code>long</code> argument.     * @see     java.lang.Long#toString(long)     */    public static String valueOf(long l) {        return Long.toString(l);    }    /**     * Returns the string representation of the <code>float</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Float.toString</code> method of one argument.     *     * @param   f   a <code>float</code>.     * @return  a string representation of the <code>float</code> argument.     * @see     java.lang.Float#toString(float)     */    public static String valueOf(float f) {        return Float.toString(f);    }    /**     * Returns the string representation of the <code>double</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Double.toString</code> method of one argument.     *     * @param   d   a <code>double</code>.     * @return  a  string representation of the <code>double</code> argument.     * @see     java.lang.Double#toString(double)     */    public static String valueOf(double d) {        return Double.toString(d);    }    /**     * Returns a canonical representation for the string object.     * <p>     * A pool of strings, initially empty, is maintained privately by the     * class <code>String</code>.     * <p>     * When the intern method is invoked, if the pool already contains a     * string equal to this <code>String</code> object as determined by     * the {@link #equals(Object)} method, then the string from the pool is     * returned. Otherwise, this <code>String</code> object is added to the     * pool and a reference to this <code>String</code> object is returned.     * <p>     * It follows that for any two strings <code>s</code> and <code>t</code>,     * <code>s.intern() == t.intern()</code> is <code>true</code>     * if and only if <code>s.equals(t)</code> is <code>true</code>.     * <p>     * All literal strings and string-valued constant expressions are     * interned. String literals are defined in section 3.10.5 of the     * <cite>The Java™ Language Specification</cite>.     *     * @return  a string that has the same contents as this string, but is     *          guaranteed to be from a pool of unique strings.     */    public native String intern();    /**     * Seed value used for each alternative hash calculated.     */    private static final int HASHING_SEED;    static {        long nanos = System.nanoTime();        long now = System.currentTimeMillis();        int SEED_MATERIAL[] = {                System.identityHashCode(String.class),                System.identityHashCode(System.class),                (int) (nanos >>> 32),                (int) nanos,                (int) (now >>> 32),                (int) now,                (int) (System.nanoTime() >>> 2)        };        // Use murmur3 to scramble the seeding material.        // Inline implementation to avoid loading classes        int h1 = 0;        // body        for (int k1 : SEED_MATERIAL) {            k1 *= 0xcc9e2d51;            k1 = (k1 << 15) | (k1 >>> 17);            k1 *= 0x1b873593;            h1 ^= k1;            h1 = (h1 << 13) | (h1 >>> 19);            h1 = h1 * 5 + 0xe6546b64;        }        // tail (always empty, as body is always 32-bit chunks)        // finalization        h1 ^= SEED_MATERIAL.length * 4;        // finalization mix force all bits of a hash block to avalanche        h1 ^= h1 >>> 16;        h1 *= 0x85ebca6b;        h1 ^= h1 >>> 13;        h1 *= 0xc2b2ae35;        h1 ^= h1 >>> 16;        HASHING_SEED = h1;    }    /**     * Cached value of the alternative hashing algorithm result     */    private transient int hash32 = 0;    /**     * Calculates a 32-bit hash value for this string.     *     * @return a 32-bit hash value for this string.     */    int hash32() {        int h = hash32;        if (0 == h) {           // harmless data race on hash32 here.           h = sun.misc.Hashing.murmur3_32(HASHING_SEED, value, 0, value.length);           // ensure result is not zero to avoid recalcing           h = (0 != h) ? h : 1;           hash32 = h;        }        return h;    }}

原创粉丝点击