STM32F10x 学习笔记4(CRC计算单元 续)

来源:互联网 发布:哈密顿算法 编辑:程序博客网 时间:2024/05/21 06:22

上篇博客给出了 STM32F10X 系列单片机中CRC 单元的用法。还指出了这个CRC 单元计算的结果与常见的CRC32 算法得到的结果不相同。但是为什么不相同,是什么原因造成的却没有写出来。这里再补一篇,把这些都说清楚。

下面先给个crc32的计算函数,这个函数计算的结果与STM32F 单片机上硬件单元的计算结果相同。

uint32_t crc32(uint32_t *addr, int num, uint32_t crc){    int i;    for (; num > 0; num--)                  {        crc = crc ^ (*addr++);             for (i = 0; i < 32; i++)                     {            if (crc & 0x80000000)                            crc = (crc << 1) ^ POLY;               else                                          crc <<= 1;                         }                                     crc &= 0xFFFFFFFF;                }                                   return(crc);                   }

在我写的文章《写给嵌入式程序员的循环冗余校验(CRC)算法入门引导》(http://blog.csdn.net/liyuanbhu/article/details/7882789) 中给了个利用查表法计算crc 的程序。那个程序稍微修改一点就能计算CRC32。下面给出改动后的程序。

//crc32.h#ifndef CRC32_H_INCLUDED#define CRC32_H_INCLUDED#ifdef __cplusplus#if __cplusplusextern "C"{    #endif    #endif /* __cplusplus */#include<stdint.h>/** The CRC parameters. Currently configured for CRC32.* CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+X0*/#define POLYNOMIAL          0x04C11DB7#define INITIAL_REMAINDER   0xFFFFFFFF#define FINAL_XOR_VALUE     0x00000000/** The width of the CRC calculation and result.* Modify the typedef for an 8 or 32-bit CRC standard.*/typedef uint32_t width_t;#define WIDTH (8 * sizeof(width_t))#define TOPBIT (1 << (WIDTH - 1))/** * Initialize the CRC lookup table. * This table is used by crcCompute() to make CRC computation faster. */void crcInit(void);/** * Compute the CRC checksum of a binary message block. * @para message, 用来计算的数据 * @para nBytes, 数据的长度 * @note This function expects that crcInit() has been called *       first to initialize the CRC lookup table. */width_t crcCompute(unsigned char * message, unsigned int nBytes, width_t remainder);#ifdef __cplusplus    #if __cplusplus}#endif#endif /* __cplusplus */#endif // CRC32_H_INCLUDED

对应的C程序如下:

#include "crc32.h"/** An array containing the pre-computed intermediate result for each* possible byte of input. This is used to speed up the computation.*/static width_t crcTable[256];/** * Initialize the CRC lookup table. * This table is used by crcCompute() to make CRC computation faster. */void crcInit(void){    width_t remainder;    width_t dividend;    int bit;    /* Perform binary long division, a bit at a time. */    for(dividend = 0; dividend < 256; dividend++)    {        /* Initialize the remainder.  */        remainder = dividend << (WIDTH - 8);        /* Shift and XOR with the polynomial.   */        for(bit = 0; bit < 8; bit++)        {            /* Try to divide the current data bit.  */            if(remainder & TOPBIT)            {                remainder = (remainder << 1) ^ POLYNOMIAL;            }            else            {                remainder = remainder << 1;            }        }        /* Save the result in the table. */        crcTable[dividend] = remainder;    }} /* crcInit() *//** * Compute the CRC checksum of a binary message block. * @para message, 用来计算的数据 * @para nBytes, 数据的长度 * @note This function expects that crcInit() has been called *       first to initialize the CRC lookup table. */width_t crcCompute(unsigned char * message, unsigned int nBytes, width_t remainder){    unsigned int offset;    unsigned char byte;    //width_t remainder = INITIAL_REMAINDER;    /* Divide the message by the polynomial, a byte at a time. */    for( offset = 0; offset < nBytes; offset++)    {        byte = (remainder >> (WIDTH - 8)) ^ message[offset];        remainder = crcTable[byte] ^ (remainder << 8);    }    /* The final remainder is the CRC result. */    return (remainder ^ FINAL_XOR_VALUE);} /* crcCompute() */

不过用这个程序直接计算得到的CRC 值与STM32 给出的并不相同。之所以会这样是因为字节序的原因。可以举个例子来说明这个问题。比如我们有一片内存区域要计算CRC值。这片内存区域的起始地址是 0x1000,共有8个字节。用 crcCompute() 函数计算时是按照地址顺序依次传入各个字节。也就是先计算0x1000 处的字节,再计算0x0001 处的字节,以此类推最后计算0x1007 地址处的字节。而 STM32 的硬件CRC单元是以32位的字为单位计算的。我们知道CRC 实际上是个多项式的除法运算,而除法运算是从高位算起的。也就是相当于它是按照 0x10030x10020x10010x1000 这个顺序计算第一个字,然后按照0x10070x10060x1005x1004 的顺序计算第二个字。因此。我们要是预先将字节序调换一下得到结果就没有问题了。这就有了下面的改造。其中 remainder 传入 0xffffffff。因为STM32 中的CRC余数初始值为0xffffffff

uint32_t stm32crc32(uint32_t * message, unsigned int nWords, uint32_t remainder){    unsigned int offset;    unsigned char byte;    unsigned char *p = (unsigned char *)message;    //width_t remainder = INITIAL_REMAINDER;    /* Divide the message by the polynomial, a byte at a time. */    for( offset = 0; offset < nWords; offset++)    {        byte = (remainder >> (WIDTH - 8)) ^ p[3];        remainder = crcTable[byte] ^ (remainder << 8);        byte = (remainder >> (WIDTH - 8)) ^ p[2];        remainder = crcTable[byte] ^ (remainder << 8);        byte = (remainder >> (WIDTH - 8)) ^ p[1];        remainder = crcTable[byte] ^ (remainder << 8);        byte = (remainder >> (WIDTH - 8)) ^ p[0];        remainder = crcTable[byte] ^ (remainder << 8);        p += 4;    }    /* The final remainder is the CRC result. */    return (remainder);} /* crcCompute() */

大家可以验证这个函数的计算结果与STM32上的结果完全一样。

写到这里本该就结束了,不过我要多说一句,之所以要这么麻烦的调换字节序,都是小端(little endian)惹的祸。要是都采用大端格式就没这些麻烦的转换了。








原创粉丝点击