高质量C\C++编程(二)

来源:互联网 发布:美白乳液知乎 编辑:程序博客网 时间:2024/05/16 07:39

这一章都是一些专题,相比上一章难好多,如果上一章只需要一扫而过,这一章就需要耐心的看和分析了。

高质量编程C\C++编程(二)

1  内存分配方式有三种:
  (1) 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static 变量。
  (2) 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。(包括指针和对象都会被释放)
  (3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc 或new 申请任意多少的内存,程序员自己负责在何时用free 或delete 释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。(不管是在哪里进行的new和malloc操作,最后一定要响应的用delete和free来释放掉,否则会产生野指针)  

2  常见的内存错误及其对策如下:
    ①内存分配未成功,却使用了它。
       编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p 是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用malloc 或new 来申请内存,应该用if(p==NULL)或if(p!=NULL)进行防错处理。
    ②内存分配虽然成功,但是尚未初始化就引用它。
       犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错(例如数组)。内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

        (一般需要给指针赋NULL的初值,给数组用malloc(数组名,0,sizeof(数组名)))
     ③内存分配成功并且已经初始化,但操作越过了内存的边界。(边界问题)例如在使用数组时经常发生下标“多    1”或者“少1”的操作。特别是在for 循环语句中,循环次数很容易搞错,导致数组操作越界。
     ④ 忘记了释放内存,造成内存泄露。含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。动态内存的申请与释放必须配对,程序中malloc 与free 的使用次数一定要相同,否则肯定有错误(new/delete 同理)。
     ⑤ 释放了内存却继续使用它。
         有三种情况:
       (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。
       (2)函数的return 语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。
       (3)使用free 或delete 释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

3  C++/C 程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。

数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。
指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
char a[] = “hello”;
a[0] = ‘X’;
cout << a << endl;
char *p = “world”; // 注意p 指向常量字符串
p[0] = ‘X’; // 编译器不能发现该错误
cout << p << endl;

以下几个例子都是指针和数组的特殊性的例子。
// 数组…
char a[] = "hello";
char b[10];
strcpy(b, a); // 不能用 b = a;
if(strcmp(b, a) == 0) // 不能用 if (b == a)
// 指针…
int len = strlen(a);
char *p = (char *)malloc(sizeof(char)*(len+1));
strcpy(p,a); // 不要用 p = a;
if(strcmp(p, a) == 0) // 不要用 if (p == a)

char a[] = "hello world";
char *p = a;
cout<< sizeof(a) << endl; // 12 字节
cout<< sizeof(p) << endl; // 4 字节


注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针
void Func(char a[100])
{
cout<< sizeof(a) << endl; // 4 字节而不是100 字节
}

4  如果函数的参数是一个指针,不要指望用该指针去申请动态内存
void GetMemory(char *p, int num)
{
p = (char *)malloc(sizeof(char) * num);
}
void Test(void)
{
char *str = NULL;
GetMemory(str, 100); // str 仍然为 NULL
strcpy(str, "hello"); // 运行错误
}
编译器总是要为函数的每个参数制作临时副本,指针
参数p 的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p 的内容,就导致
参数p 的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p 申请
了新的内存,只是把_p 所指的内存地址改变了,但是p 丝毫未变。所以函数GetMemory
并不能输出任何东西。事实上,每执行一次GetMemory 就会泄露一块内存,因为没有用
free 释放内存。
如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”
void GetMemory2(char **p, int num)
{
*p = (char *)malloc(sizeof(char) * num);
}
void Test2(void)
{
char *str = NULL;
GetMemory2(&str, 100); // 注意参数是 &str,而不是str
strcpy(str, "hello");
cout<< str << endl;
free(str);
}
由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态
内存
char *GetMemory3(int num)
{
char *p = (char *)malloc(sizeof(char) * num);
return p;
}
void Test3(void)
{
char *str = NULL;
str = GetMemory3(100);
strcpy(str, "hello");
cout<< str << endl;
free(str);
}
用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return 语句用错了。这里强调不要用return 语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡
char *GetString(void)
{
char p[] = "hello world";
return p; // 编译器将提出警告
}
void Test4(void)
{
char *str = NULL;
str = GetString(); // str 的内容是垃圾
cout<< str << endl;
}
用调试器逐步跟踪Test4,发现执行str = GetString 语句后str 不再是NULL 指针,但是str 的内容不是“hello world”而是垃圾。
char *GetString2(void)
{
char *p = "hello world";
return p;
}
void Test5(void)
{
char *str = NULL;
str = GetString2();
cout<< str << endl;
}
函数 Test5 运行虽然不会出错,但是函数GetString2 的设计概念却是错误的。因为GetString2 内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。

5  指针p被free 以后其地址仍然不变(非NULL),只是该地址对应的内存是垃圾,p 成了“野指针”。
指针有一些“似是而非”的特征:
(1)指针消亡了,并不表示它所指的内存会被自动释放。
(2)内存被释放了,并不表示指针会消亡或者成了NULL 指针。
函数体内的局部变量指针在函数结束时不会自动消亡。

6  malloc和new的差异:

class Obj
{
public :
Obj(void){ cout << “Initialization” << endl; }
~Obj(void){ cout << “Destroy” << endl; }
void Initialize(void){ cout << “Initialization” << endl; }
void Destroy(void){ cout << “Destroy” << endl; }
};
void UseMallocFree(void)
{
Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存
a->Initialize(); // 初始化
//…
a->Destroy(); // 清除工作
free(a); // 释放内存
}
void UseNewDelete(void)
{
Obj *a = new Obj; // 申请动态内存并且初始化
//…
delete a; // 清除并且释放内存
}
类 Obj 的函数Initialize 模拟了构造函数的功能,函数Destroy 模拟了析构函数的功能。函数UseMallocFree 中,由于malloc/free 不能执行构造函数与析构函数,必须调用成员函数Initialize 和Destroy 来完成初始化与清除工作。函数UseNewDelete 则简单得多。既然 new/delete 的功能完全覆盖了malloc/free,为什么C++不把malloc/free 淘汰出
局呢?这是因为C++程序经常要调用C 函数,而C 程序只能用malloc/free 管理动态内存。


如果在申请动态内存时找不到足够大的内存块,malloc 和new 将返回NULL 指针,宣告内存申请失败。通常有三种方式处理“内存耗尽”问题。
(1)判断指针是否为NULL,如果是则马上用return 语句终止本函数。例如:
void Func(void)
{
A *a = new A;
if(a == NULL)
{
return;
}

}
(2)判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行。例如:
void Func(void)
{
A *a = new A;
if(a == NULL)
{
cout << “Memory Exhausted” << endl;
exit(1);
}

}
(3)为new 和malloc 设置异常处理函数。例如Visual C++可以用_set_new_hander 函数
为new 设置用户自己定义的异常处理函数,也可以让malloc 享用与new 相同的异常处
理函数。详细内容请参考C++使用手册。
上述(1)(2)方式使用最普遍。如果一个函数内有多处需要申请动态内存,那么方
式(1)就显得力不从心(释放内存很麻烦),应该用方式(2)来处理。
void main(void)
{
float *p = NULL;
while(TRUE)
{
p = new float[1000000];
cout << “eat memory” << endl;
if(p==NULL)
exit(1);
}
}
有一个很重要的现象要告诉大家。对于32 位以上的应用程序而言,无论怎样使用
malloc 与new,几乎不可能导致“内存耗尽”。我在Windows 98 下用Visual C++编写了
测试程序,见示例7-9。这个程序会无休止地运行下去,根本不会终止。因为32 位操作
系统支持“虚存”,内存用完了,自动用硬盘空间顶替。我只听到硬盘嘎吱嘎吱地响,
Window 98 已经累得对键盘、鼠标毫无反应。

函数 malloc 的原型如下:
void * malloc(size_t size);
int *p = (int *) malloc(sizeof(int) * length);
malloc 返回值的类型是void *,所以在调用malloc 时要显式地进行类型转换,将void* 转换成所需要的指针类型。
malloc 函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。我们通常记不住int, float 等数据类型的变量的确切字节数,所以需要用sizeof进行确认。

如果对象有多个构造函数,那么new 的语句也可以有多种形式。例如
class Obj
{
public :
Obj(void); // 无参数的构造函数
Obj(int x); // 带一个参数的构造函数

}
void Test(void)
{
Obj *a = new Obj;
Obj *b = new Obj(1); // 初值为1

delete a;
delete b;
}
如果用new 创建对象数组,那么只能使用对象的无参数构造函数。例如Obj *objects = new Obj[100]; // 创建100 个动态对象不能写成
Obj *objects = new Obj[100](1);// 创建100 个动态对象的同时赋初值1
在用delete 释放对象数组时,留意不要丢了符号‘[]’。
例如

delete []objects; // 正确的用法
delete objects; // 错误的用法
后者相当于 delete objects[0],漏掉了另外99 个对象。与malloc相比new方便了很多,也不容易出错,所以尽量要使用new,malloc可以在初始化一些对象上使用。

7  成员函数被重载的特征:
(1)相同的范围(在同一个类中);
(2)函数名字相同;
(3)参数不同;
(4)virtual 关键字可有可无。

覆盖是指派生类函数覆盖基类函数,特征是:
(1)不同的范围(分别位于派生类与基类);
(2)函数名字相同;
(3)参数相同;
(4)基类函数必须有virtual 关键字。
隐藏:
(1)如果派生类的函数与基类的函数同名,但是参数不同。此时,不论有无virtual 关
键字,基类的函数将被隐藏(注意别与重载混淆)。
(2)如果派生类的函数与基类的函数同名,并且参数也相同,但是基类函数没有virtual
关键字。此时,基类的函数被隐藏(注意别与覆盖混淆)。
#include <iostream.h>
class Base
{
public:
virtual void f(float x){ cout << "Base::f(float) " << x << endl; }
void g(float x){ cout << "Base::g(float) " << x << endl; }
void h(float x){ cout << "Base::h(float) " << x << endl; }
};
class Derived : public Base
{
public:
virtual void f(float x){ cout << "Derived::f(float) " << x << endl; }
void g(int x){ cout << "Derived::g(int) " << x << endl; }
void h(float x){ cout << "Derived::h(float) " << x << endl; }
};
void main(void)
{
Derived d;
Base *pb = &d;
Derived *pd = &d;
// Good : behavior depends solely on type of the object
pb->f(3.14f); // Derived::f(float) 3.14
pd->f(3.14f); // Derived::f(float) 3.14
// Bad : behavior depends on type of the pointer
pb->g(3.14f); // Base::g(float) 3.14
pd->g(3.14f); // Derived::g(int) 3 (surprise!)
// Bad : behavior depends on type of the pointer
pb->h(3.14f); // Base::h(float) 3.14 (surprise!)
pd->h(3.14f); // Derived::h(float) 3.14
}
// 调用本类型成员函数,隐藏其他

(1)函数Derived::f(float)覆盖了Base::f(float)。
(2)函数Derived::g(int)隐藏了Base::g(float),而不是重载。
(3)函数Derived::h(float)隐藏了Base::h(float),而不是覆盖。

8  参数缺省值只能出现在函数的声明中,而不能出现在定义体中。
例如:
void Foo(int x=0, int y=0); // 正确,缺省值出现在函数的声明中
void Foo(int x=0, int y=0) // 错误,缺省值出现在函数的定义体中
{

}
如果函数有多个参数,参数只能从后向前挨个儿缺省,否则将导致函
数调用语句怪模怪样。
正确的示例如下:
void Foo(int x, int y=0, int z=0);
错误的示例如下:
void Foo(int x=0, int y, int z=0);

不合理地使用参数的缺省值将导致重载函数output 产生二义性。
#include <iostream.h>
void output( int x);
void output( int x, float y=0.0);
void output( int x)
{
cout << " output int " << x << endl ;
}
void output( int x, float y)
{
cout << " output int " << x << " and float " << y << endl ;
}
void main(void)
{
int x=1;
float y=0.5;
// output(x); // error! ambiguous call
output(x,y); // output int 1 and float 0.5
}

9  在 C++语言中,可以用关键字operator 加上运算符来表示函数,叫做运算符重载。
例如两个复数相加函数:
Complex Add(const Complex &a, const Complex &b);
可以用运算符重载来表示:
Complex operator +(const Complex &a, const Complex &b);
运算符与普通函数在调用时的不同之处是:对于普通函数,参数出现在圆括号内;
而对于运算符,参数出现在其左、右侧。例如
Complex a, b, c;

c = Add(a, b); // 用普通函数
c = a + b; // 用运算符 +
如果运算符被重载为全局函数,那么只有一个参数的运算符叫做一元运算符,有两个参数的运算符叫做二元运算符。
如果运算符被重载为类的成员函数,那么一元运算符没有参数,二元运算符只有一个右侧参数,因为对象自己成了左侧参数。

                  运算符                                                                             规则

          所有的一元运算符                                                       建议重载为成员函数
                  = () [] ->                                                              只能重载为成员函数
+= -= /= *= &= |= ~= %= >>= <<=                                       建议重载为成员函数
             所有其它运算符                                                        建议重载为全局函数
(1)不能改变C++内部数据类型(如int,float 等)的运算符。
(2)不能重载‘.’,因为‘.’在类中对任何成员都有意义,已经成为标准用法。
(3)不能重载目前C++运算符集合中没有的符号,如#,@,$等。原因有两点,一是难以
理解,二是难以确定优先级。
(4)对已经存在的运算符进行重载时,不能改变优先级规则,否则将引起混乱。

10  让我们看看C++ 的“函数内联”是如何工作的。

对于任何内联函数,编译器在符号表里放入函数的声明(包括名字、参数类型、返回值类型)。如果编译器没有发现内联函数存在错误,那么该函数的代码也被放入符号表里。在调用一个内联函数时,编译器首先检查调用是否正(进行类型安全检查,或者进行自动类型转换,当然对所有的函数都一样)。如果正确,内联函数的代码就会直接替换函数调用,于是省去了函数调用的开销。这个过程与预处理有显著的不同,因为预处理器不能进行类型安全检查,或者进行自动类型转换。假如内联函数是成员函数,对象的地址(this)会被放在合适的地方,这也是预处理器办不的。
C++ 语言的函数内联机制既具备宏代码的效率,又增加了安全性,而且可以自由操作类的数据成员。所以在C++ 程序中,应该用内联函数取代所有宏代码,“断言assert”恐怕是唯一的例外。
关键字 inline 必须与函数定义体放在一起才能使函数成为内联,仅将inline 放在函数声明前面不起任何作用。如下风格的函数Foo 不能成为内联函数:
inline void Foo(int x, int y); // inline 仅与函数声明放在一起
void Foo(int x, int y)
{

}
而如下风格的函数Foo 则成为内联函数:
void Foo(int x, int y);
inline void Foo(int x, int y) // inline 与函数定义体放在一起
{

}
inline 不应该出现在函数的声明中
内联是以代码膨胀(复制)为代价,仅仅省去了函数调用的开销,从而提高函数的执行效率。如果执行函数体内代码的时间,相比于函数调用的开销较大,那么效率的收
获会很少。另一方面,每一处内联函数的调用都要复制代码,将使程序的总代码量增大,消耗更多的内存空间。以下情况不宜使用内联:
(1)如果函数体内的代码比较长,使用内联将导致内存消耗代价较高。
(2)如果函数体内出现循环,那么执行函数体内代码的时间要比函数调用的开销大。

11  String的结构如下:
class String
{
public:
String(const char *str = NULL); // 普通构造函数
String(const String &other); // 拷贝构造函数
~ String(void); // 析构函数
String & operate =(const String &other); // 赋值函数
private:
char *m_data; // 用于保存字符串
};
把对象的初始化工作放在构造函数中,把清除工作放在析构函数中。当对象被创建时,构造函数被自动执行。当对象消亡时,析构函数被自动执行。这下就不用担心忘了对象的初始化和清除工作。

12 构造函数的初始化表
构造函数有个特殊的初始化方式叫“初始化表达式表”(简称初始化表)。初始化表位于函数参数表之后,却在函数体 {} 之前。这说明该表里的初始化工作发生在函数体内的任何代码被执行之前。
构造函数初始化表的使用规则:
如果类存在继承关系,派生类必须在其初始化表里调用基类的构造函数。
例如
class A
{…
A(int x); // A 的构造函数
};
class B : public A
{…
B(int x, int y);// B 的构造函数
};
B::B(int x, int y)
: A(x) // 在初始化表里调用A 的构造函数
{

}

在函数的构造函数的过程中一共是分成是两个阶段:变量初始化阶段和计算阶段,初始化阶段先于计算阶段。初始化表主要就是用来初始化类中的成员的。在系统默认类型的初始化上,初始化表和在构造函数中进行初始化的性能差不多,但是在类成员的初始化上,初始化表就展现出了非常大的优势。

以下例子说明:

class Test1
{
Test1() // 无参构造函数
{cout << "Construct Test1" << endl ;}
Test1(const Test1& t1) // 拷贝构造函数
{cout << "Copy constructor for Test1" << endl ;this->a = t1.a ;}
Test1& operator = (const Test1& t1) //赋值运算符
{cout << "assignment for Test1" << endl ;this->a = t1.a ;return *this;}
int a ;
};
struct Test2
{
Test1 test1 ;
Test2(Test1 &t1)
{test1 = t1 ;}
};
调用代码:
Test1 t1 ;
Test2 t2(t1) ;
输出:
Construct Test1
Construct Test1
assignment for Test1
解释一下:
第一行输出对应调用代码中第一行,构造一个Test1对象
第二行输出对应Test2构造函数中的代码,用默认的构造函数初始化对象test1 // 这就是所谓的初始化阶段
第三行输出对应Test2的赋值运算符,对test1执行赋值操作 // 这就是所谓的计算阶段

struct Test2
{
Test1 test1 ;
Test2(Test1 &t1):test1(t1){}
}
使用同样的调用代码,输出结果如下:
Construct Test1
Copy constructor for Test1
第一行输出对应 调用代码的第一行
第二行输出对应Test2的初始化列表,直接调用拷贝构造函数初始化test1,省去了调用默认构造函数的过程
所以一个好的原则是,能使用初始化列表的时候尽量使用初始化列表

除了性能问题之外,有些时场合初始化列表是不可或缺的,以下几种情况时必须使用初始化列表
1. 常量成员,因为常量只能初始化不能赋值,所以必须放在初始化列表里面
2. 引用类型,引用必须在定义的时候初始化,并且不能重新赋值,所以也要写在初始化列表里面
3. 没有默认构造函数的类类型,因为使用初始化列表可以不必调用默认构造函数来初始化,而是直接调用拷贝构造函数初始化
struct Test1
{
Test1(int a):i(a){}
int i;
};
struct Test2
{
Test1 test1 ;
Test2(Test1 &t1)
{test1 = t1;}
};
以上代码无法通过编译,因为Test2的构造函数中test1 = t1这一行实际上分成两步执行:
1. 调用Test1的默认构造函数来初始化test1
2. 调用Test1的赋值运算符给test1赋值
但是由于Test1没有默认的构造函数,所谓第一步无法执行,故而编译错误。正确的代码如下,使用初始化列表代替赋值操作
struct Test2
{
Test1 test1 ;
Test2(Test1 &t1):test1(t1){}
}
成员是按照他们在类中出现的顺序进行初始化的,而不是按照他们在初始化列表出现的顺序初始化的,看代码:
struct foo
{
int i ;int j ;
foo(int x):i(x), j(i){}; // ok, 先初始化i,后初始化j
};
再看下面的代码:
struct foo
{
int i ;int j ;
foo(int x):j(x), i(j){} // i值未定义
};
这里i的值是未定义的因为虽然j在初始化列表里面出现在i前面,但是i先于j定义,所以先初始化i,而i由j初始化,此时j尚未初始化,所以导致i的值未定义。一个好的习惯是,按照成员定义的顺序进行初始化。
由于并非所有的对象都会使用拷贝构造函数和赋值函数,程序员可能对这两个函数有些轻视。请先记住以下的警告,在阅读正文时就会多心:
开头讲过,如果不主动编写拷贝构造函数和赋值函数,编译器将以“位拷贝”(又称浅拷贝)的方式自动生成缺省的函数。倘若类中含有指针变量,那么这两个缺省的函数就隐含了错误。以类String 的两个对象a,b 为例,假设a.m_data 的内容为“hello”,b.m_data的内容为“world”。现将 a 赋给b,缺省赋值函数的“位拷贝”意味着执行b.m_data = a.m_data。这将造成三个错误:一是b.m_data 原有的内存没被释放,造成内存泄露;二是b.m_data和a.m_data 指向同一块内存,a 或b 任何一方变动都会影响另一方;三是在对象被析构时,m_data 被释放了两次。
拷贝构造函数和赋值函数非常容易混淆,常导致错写、错用。拷贝构造函数是在对象被创建时调用的,而赋值函数只能被已经存在了的对象调用。以下程序中,第三个语句和第四个语句很相似,你分得清楚哪个调用了拷贝构造函数,哪个调用了赋值函数吗?
String a(“hello”);
String b(“world”);
String c = a; // 调用了拷贝构造函数,最好写成 c(a);
c = b; // 调用了赋值函数
本例中第三个语句的风格较差,宜改写成 String c(a) 以区别于第四个语句。
浅拷贝和深拷贝 
在某些状况下,类内成员变量需要动态开辟堆内存,如果实行位拷贝,也就是把对象里的值完全复制给另一个对象,如A=B。这时,如果B中有一个成员变量指针已经申请了内存,那A中的那个成员变量也指向同一块内存。这就出现了问题:当B把内存释放了(如:析构),这时A内的指针就是野指针了,出现运行错误。 
    深拷贝和浅拷贝的定义可以简单理解成:如果一个类拥有资源(堆,或者是其它系统资源),当这个类的对象发生复制过程的时候,这个过程就可以叫做深拷贝,反之对象存在资源,但复制过程并未复制资源的情况视为浅拷贝。 
    浅拷贝资源后在释放资源的时候会产生资源归属不清的情况导致程序运行出错。
13示例:类String 的拷贝构造函数与赋值函数
// 拷贝构造函数
String::String(const String &other)
{
// 允许操作other 的私有成员m_data
int length = strlen(other.m_data);
m_data = new char[length+1];
strcpy(m_data, other.m_data);
}
// 赋值函数
String & String::operate =(const String &other)
{
// (1) 检查自赋值
if(this == &other)
return *this;
// (2) 释放原有的内存资源
delete [] m_data;
// (3)分配新的内存资源,并复制内容
int length = strlen(other.m_data);
m_data = new char[length+1];
strcpy(m_data, other.m_data);
// (4)返回本对象的引用
return *this;
}
类 String 拷贝构造函数与普通构造函数(参见9.4 节)的区别是:在函数入口处无需与NULL 进行比较,这是因为“引用”不可能是NULL,而“指针”可以为NULL。
类 String 的赋值函数比构造函数复杂得多,分四步实现:
(1)第一步,检查自赋值。你可能会认为多此一举,难道有人会愚蠢到写出 a = a 这样的自赋值语句!的确不会。但是间接的自赋值仍有可能出现,例如
// 内容自赋值
b = a;

// 地址自赋值
b = &a;

c = b;

a = c;
a = *b;
也许有人会说:“即使出现自赋值,我也可以不理睬,大不了化点时间让对象复制自己而已,反正不会出错!”
他真的说错了。看看第二步的delete,自杀后还能复制自己吗?所以,如果发现自赋值,应该马上终止函数。注意不要将检查自赋值的if 语句
if(this == &other)
错写成为
if( *this == other)
(2)第二步,用delete 释放原有的内存资源。如果现在不释放,以后就没机会了,将造成内存泄露。
(3)第三步,分配新的内存资源,并复制字符串。注意函数strlen 返回的是有效字符串长度,不包含结束符‘\0’。函数strcpy 则连‘\0’一起复制。
(4)第四步,返回本对象的引用,目的是为了实现象 a = b = c 这样的链式表达。注意不要将 return *this 错写成 return this 。那么能否写成return other 呢?效果不是一样吗?
不可以!因为我们不知道参数other 的生命期。有可能other 是个临时对象,在赋值结束后它马上消失,那么return other 返回的将是垃圾。

偷懒的办法是:只需将拷贝构造函数和赋值函数声明为私有函数,不用编写代码。
例如:
class A
{ …
private:
A(const A &a); // 私有的拷贝构造函数
A & operate =(const A &a); // 私有的赋值函数
};
如果有人试图编写如下程序:
A b(a); // 调用了私有的拷贝构造函数
b = a; // 调用了私有的赋值函数
编译器将指出错误,因为外界不可以操作 A 的私有函数。
14如何在派生类中实现类的基本函数
基类的构造函数、析构函数、赋值函数都不能被派生类继承。如果类之间存在继承关系,在编写上述基本函数时应注意以下事项:
派生类的构造函数应在其初始化表里调用基类的构造函数。
基类与派生类的析构函数应该为虚(即加virtual 关键字)。例如
#include <iostream.h>
class Base
{
public:
virtual ~Base() { cout<< "~Base" << endl ; }
};
class Derived : public Base
{
public:
virtual ~Derived() { cout<< "~Derived" << endl ; }
};
void main(void)
{
Base * pB = new Derived; // upcast
delete pB;
}
输出结果为:
~Derived
~Base
如果析构函数不为虚,那么输出结果为
~Base
在编写派生类的赋值函数时,注意不要忘记对基类的数据成员重新赋值。例如:
class Base
{
public:

Base & operate =(const Base &other); // 类Base 的赋值函数
private:
int m_i, m_j, m_k;
};
class Derived : public Base
{
public:

Derived & operate =(const Derived &other); // 类Derived 的赋值函数
private:
int m_x, m_y, m_z;
};
Derived & Derived::operate =(const Derived &other)
{
//(1)检查自赋值
if(this == &other)
return *this;
//(2)对基类的数据成员重新赋值
Base::operate =(other); // 因为不能直接操作私有数据成员
//(3)对派生类的数据成员赋值
m_x = other.m_x;
m_y = other.m_y;
m_z = other.m_z;
//(4)返回本对象的引用
return *this;

如果类A 和类B 毫不相关,不可以为了使B 的功能更多些而让B继承A 的功能和属性。不要觉得“白吃白不吃”,让一个好端端的健壮青年无缘无故地吃人参补身体。
若在逻辑上B 是A 的“一种”(a kind of ),则允许B 继承A 的功能和属性。例如男人(Man)是人(Human)的一种,男孩(Boy)是男人的一种。那么类Man 可以从类Human 派生,类Boy 可以从类Man 派生。
注意事项
看起来很简单,但是实际应用时可能会有意外,继承的概念在程序世界与现实世界并不完全相同。
所以更加严格的继承规则应当是:若在逻辑上B 是A 的“一种”,并且A 的所有功能和属性对B 而言都有意义,则允许B 继承A 的功能和属性。
若在逻辑上A 是B 的“一部分”(a part of),则不允许B 从A 派生,而是要用A 和其它东西组合出B。

15  看到 const 关键字,C++程序员首先想到的可能是const 常量。这可不是良好的条件反射。如果只知道用const 定义常量,那么相当于把火药仅用于制作鞭炮。const 更大的魅力是它可以修饰函数的参数、返回值,甚至函数的定义体。
const 是constant 的缩写,“恒定不变”的意思。被const 修饰的东西都受到强制保护,可以预防意外的变动,能提高程序的健壮性。所以很多C++程序设计书籍建议:“Use constwhenever you need”。
用const 修饰函数的参数
如果参数作输出用,不论它是什么数据类型,也不论它采用“指针传递”还是“引用传递”,都不能加const 修饰,否则该参数将失去输出功能。
const 只能修饰输入参数:
如果输入参数采用“指针传递”,那么加const 修饰可以防止意外地改动该指针,起到保护作用。
例如 StringCopy 函数:
void StringCopy(char *strDestination, const char *strSource);
其中strSource 是输入参数,strDestination 是输出参数。给strSource 加上const 修饰后,如果函数体内的语句试图改动strSource 的内容,编译器将指出错误。
如果输入参数采用“值传递”,由于函数将自动产生临时变量用于复制该参数,该输入参数本来就无需保护,所以不要加const 修饰。
例如不要将函数void Func1(int x) 写成void Func1(const int x)。同理不要将函数voidFunc2(A a) 写成void Func2(const A a)。其中A 为用户自定义的数据类型。
对于非内部数据类型的参数而言,象void Func(A a) 这样声明的函数注定效率比较低。因为函数体内将产生A 类型的临时对象用于复制参数a,而临时对象的构造、复制、析构过程都将消耗时间。
为了提高效率,可以将函数声明改为void Func(A &a),因为“引用传递”仅借用一下参数的别名而已,不需要产生临时对象。但是函数void Func(A &a) 存在一个缺点:“引用传递”有可能改变参数a,这是我们不期望的。解决这个问题很容易,加const 修饰即可,因此函数最终成为void Func(const A &a)。
const 成员函数
任何不会修改数据成员的函数都应该声明为const 类型。如果在编写const 成员函数时,不慎修改了数据成员,或者调用了其它非const 成员函数,编译器将指出错误,这无疑会提高程序的健壮性。
以下程序中,类stack 的成员函数GetCount 仅用于计数,从逻辑上讲GetCount 应当为const 函数。编译器将GetCount 函数中的错误。
class Stack
{
public:
void Push(int elem);
int Pop(void);
int GetCount(void) const; // const 成员函数
private:
int m_num;
int m_data[100];
};
int Stack::GetCount(void) const
{
++ m_num; // 编译错误,企图修改数据成员m_num
Pop(); // 编译错误,企图调用非const 函数
return m_num;
}

16  最后的一些建议:

◆不要一味地追求程序的效率,应当在满足正确性、可靠性、健壮性、可读性等质量因素的前提下,设法提高程序的效率。
以提高程序的全局效率为主,提高局部效率为辅。
在优化程序的效率时,应当先找出限制效率的“瓶颈”,不要在无关紧要之处优化。
先优化数据结构和算法,再优化执行代码。
有时候时间效率和空间效率可能对立,此时应当分析那个更重要,
作出适当的折衷。例如多花费一些内存来提高性能。
不要追求紧凑的代码,因为紧凑的代码并不能产生高效的机器码。当心那些视觉上不易分辨的操作符发生书写错误。
我们经常会把“==”误写成“=”,象“||”、“&&”、“<=”、“>=”这类符号也很容易发生“丢1”失误。然而编译器却不一定能自动指出这类错误。
变量(指针、数组)被创建之后应当及时把它们初始化,以防止把未被初始化的变量当成右值使用。
当心变量的初值、缺省值错误,或者精度不够。
当心数据类型转换发生错误。尽量使用显式的数据类型转换(让人们知道发生了什么事),避免让编译器轻悄悄地进行隐式的数据类型转换。
当心变量发生上溢或下溢,数组的下标越界。
当心忘记编写错误处理程序,当心错误处理程序本身有误。
当心文件I/O 有错误。
避免编写技巧性很高代码。
不要设计面面俱到、非常灵活的数据结构。
如果原有的代码质量比较好,尽量复用它。但是不要修补很差劲的代码,应当重新编写。
尽量使用标准库函数,不要“发明”已经存在的库函数。
尽量不要使用与具体硬件或软件环境关系密切的变量。
把编译器的选择项设置为最严格状态。
如果可能的话,使用PC-Lint、LogiScope 等工具进行代码审查。