Android uevent进程源码分析

来源:互联网 发布:中航工业工作服 淘宝 编辑:程序博客网 时间:2024/04/30 00:17

在Android Init进程源码分析中讲到init进程会依次执行被加入到待执行队列action_queue中的Action,在init.rc中我们有这么一段配置:

 11 on early-init 12     # Set init and its forked children's oom_adj. 13     write /proc/1/oom_adj -16 14  15     start ueventd 16  17 # create mountpoints 18     mkdir /mnt 0775 root system
对于early-init 这个section 在Android Init进程源码分析一文中已经介绍了在解析完init.rc文件后被添加到了action_queue队列

action_for_each_trigger("early-init", action_add_queue_tail);
因此Init进程会首先启动ueventd进程,关键字start用于启动一个服务进程,该关键字对应的执行函数为:

KEYWORD(start,       COMMAND, 1, do_start)
在解析命令行时,被添加到Action的commands链表中:

cmd = malloc(sizeof(*cmd) + sizeof(char*) * nargs);cmd->func = kw_func(kw);cmd->nargs = nargs;memcpy(cmd->args, args, sizeof(char*) * nargs);list_add_tail(&act->commands, &cmd->clist);

ueventd进程的执行代码和Init进程的执行代码被编译到了同一个可执行程序Init中了,通过查看Android.mk文件即可以得到证实:

LOCAL_SRC_FILES:= \builtins.c \init.c \devices.c \property_service.c \util.c \parser.c \logo.c \keychords.c \signal_handler.c \init_parser.c \ueventd.c \ueventd_parser.cifeq ($(strip $(INIT_BOOTCHART)),true)LOCAL_SRC_FILES += bootchart.cLOCAL_CFLAGS    += -DBOOTCHART=1endififeq ($(BOARD_HAVE_BLUETOOTH_BCM),true)LOCAL_CFLAGS += \-DBOARD_HAVE_BLUETOOTH_BCMendififneq (,$(filter userdebug eng,$(TARGET_BUILD_VARIANT)))LOCAL_CFLAGS += -DALLOW_LOCAL_PROP_OVERRIDE=1endifLOCAL_MODULE:= initLOCAL_FORCE_STATIC_EXECUTABLE := trueLOCAL_MODULE_PATH := $(TARGET_ROOT_OUT)LOCAL_UNSTRIPPED_PATH := $(TARGET_ROOT_OUT_UNSTRIPPED)LOCAL_STATIC_LIBRARIES := libfs_mgr libcutils libcifeq ($(HAVE_SELINUX),true)LOCAL_STATIC_LIBRARIES += libselinuxLOCAL_C_INCLUDES += external/libselinux/includeLOCAL_CFLAGS += -DHAVE_SELINUXendifinclude $(BUILD_EXECUTABLE)# Make a symlink from /sbin/ueventd to /initSYMLINKS := $(TARGET_ROOT_OUT)/sbin/ueventd$(SYMLINKS): INIT_BINARY := $(LOCAL_MODULE)$(SYMLINKS): $(LOCAL_INSTALLED_MODULE) $(LOCAL_PATH)/Android.mk@echo "Symlink: $@ -> ../$(INIT_BINARY)"@mkdir -p $(dir $@)@rm -rf $@$(hide) ln -sf ../$(INIT_BINARY) $@ALL_DEFAULT_INSTALLED_MODULES += $(SYMLINKS)
uevent以软链接的方式链接到了Init可执行程序,通过查看手机中的uevent程序可知:

因为ueventd 和 Init 在同一个可执行文件下,因此在启动ueventd进程时,进程入口函数依然是system\core\init\init.c文件中的main函数:

int main(int argc, char **argv){    int fd_count = 0;    struct pollfd ufds[4];    char *tmpdev;    char* debuggable;    char tmp[32];    int property_set_fd_init = 0;    int signal_fd_init = 0;    int keychord_fd_init = 0;    bool is_charger = false;    if (!strcmp(basename(argv[0]), "ueventd"))        return ueventd_main(argc, argv);.....}

basename 函数从启动的程序路径下截取应用名称,如果启动的应用为ueventd进程,则跳转到ueventd_main函数作为应用的入口函数:

int ueventd_main(int argc, char **argv){    struct pollfd ufd;    int nr;    char tmp[32];    /*     * init sets the umask to 077 for forked processes. We need to     * create files with exact permissions, without modification by     * the umask.     */    umask(000);    /* Prevent fire-and-forget children from becoming zombies.     * If we should need to wait() for some children in the future     * (as opposed to none right now), double-forking here instead     * of ignoring SIGCHLD may be the better solution.     */    signal(SIGCHLD, SIG_IGN);    open_devnull_stdio();    klog_init();    INFO("starting ueventd\n");    /* Respect hardware passed in through the kernel cmd line. Here we will look     * for androidboot.hardware param in kernel cmdline, and save its value in     * hardware[]. */    import_kernel_cmdline(0, import_kernel_nv);    get_hardware_name(hardware, &revision);    //解析ueventd.rc配置文件    ueventd_parse_config_file("/ueventd.rc");    //解析ueventd.xxx.rc 配置文件    snprintf(tmp, sizeof(tmp), "/ueventd.%s.rc", hardware);    ueventd_parse_config_file(tmp);    //设备节点初始化    device_init();        ufd.events = POLLIN;    ufd.fd = get_device_fd();    //进入闭环监控模式    while(1) {         ufd.revents = 0;//监控uevent socket的连接,参数为-1表示无限超时,在没有事件发生时函数阻塞监控        nr = poll(&ufd, 1, -1);        if (nr <= 0)            continue;        if (ufd.revents == POLLIN)   //设备事件处理               handle_device_fd();    }}
该函数前面几个步骤和init进程基本相同,这里就不在详细介绍了,可参考Android Init进程源码分析,在初始化完标准输入输出、log、导入命令行参数后,将解析uevent.rc文件和一个同硬件特定硬件相关的ueventd.XXX.rc文件,ueventd.rc文件内容如下所示:

/dev/null                 0666   root       root/dev/zero                 0666   root       root/dev/full                 0666   root       root/dev/ptmx                 0666   root       root/dev/tty                  0666   root       root/dev/random               0666   root       root/dev/urandom              0666   root       root/dev/ashmem               0666   root       root/dev/binder               0666   root       root# Anyone can read the logs, but if they're not in the "logs"# group, then they'll only see log entries for their UID./dev/log/*                0666   root       log# the msm hw3d client device node is world writable/readable./dev/msm_hw3dc            0666   root       root# gpu driver for adreno200 is globally accessible/dev/kgsl                 0666   root       root# these should not be world writable/dev/diag                 0660   radio      radio/dev/diag_arm9            0660   radio      radio/dev/android_adb          0660   adb        adb/dev/android_adb_enable   0660   adb        adb/dev/ttyMSM0              0600   bluetooth  bluetooth/dev/uinput               0660   system     bluetooth

在system\core\init\ueventd.c文件中,使用ueventd_parse_config_file函数来对ueventd.rc进行解析,接下来详细分析整个解析过程:

int ueventd_parse_config_file(const char *fn){    char *data;//读取文件内容    data = read_file(fn, 0);    if (!data) return -1;    //解析整个rc文件内容    parse_config(fn, data);    DUMP();    return 0;}

以上步骤和Init进程解析init.rc文件的步骤相同,不过这里调用的parse_config函数不同,该函数是专门用于解析ueventd.rc文件的,具体解析过程如下:

static void parse_config(const char *fn, char *s){    struct parse_state state;    char *args[UEVENTD_PARSER_MAXARGS];    int nargs;    nargs = 0;    state.filename = fn; //设置解析文件的路径    state.line = 1;    state.ptr = s;//文件内容    state.nexttoken = 0;    state.parse_line = parse_line_device; //设置每行解析回调函数    for (;;) {//从文件内容中查找token,与init.rc文件类似        int token = next_token(&state);         switch (token) {//文件结束        case T_EOF:            state.parse_line(&state, 0, 0);            return;//新的一行        case T_NEWLINE:            if (nargs) {    //调用行解析函数解析每一行                state.parse_line(&state, nargs, args);                nargs = 0;            }            break;        case T_TEXT:            if (nargs < UEVENTD_PARSER_MAXARGS) {                args[nargs++] = state.text;            }            break;        }    }}

函数首先查找指定的token,然后对不同的token做不同的处理,对于发现新行时,调用parse_line_device函数对每一行进行详细解析,该函数实现如下:

static void parse_line_device(struct parse_state* state, int nargs, char **args){    set_device_permission(nargs, args);}

函数直接调用set_device_permission来实现,ueventd.rc文件每一行的书写规则为:

非sysfs 设备文件:

|name|  |permission| |user| |group|

/dev/cam   0660   root       ca

sysfs 设备文件属性:
/sys/devices/virtual/input/input*   enable      0660  root   input

void set_device_permission(int nargs, char **args){    char *name;    char *attr = 0;    mode_t perm;    uid_t uid;    gid_t gid;    int prefix = 0;    char *endptr;    int ret;    char *tmp = 0;    if (nargs == 0)        return;    if (args[0][0] == '#')        return;/*  |name|  |permission| |user| |group|  */    name = args[0];    if (!strncmp(name,"/sys/", 5) && (nargs == 5)) {        INFO("/sys/ rule %s %s\n",args[0],args[1]);        attr = args[1];        args++;        nargs--;    }//参数检查    if (nargs != 4) {        ERROR("invalid line ueventd.rc line for '%s'\n", args[0]);        return;    }    /* If path starts with mtd@ lookup the mount number. */    if (!strncmp(name, "mtd@", 4)) {        int n = mtd_name_to_number(name + 4);        if (n >= 0)            asprintf(&tmp, "/dev/mtd/mtd%d", n);        name = tmp;    } else {        int len = strlen(name);        if (name[len - 1] == '*') {            prefix = 1;            name[len - 1] = '\0';        }    }    //权限检查    perm = strtol(args[1], &endptr, 8);    if (!endptr || *endptr != '\0') {        ERROR("invalid mode '%s'\n", args[1]);        free(tmp);        return;    }    //从android_ids数组中查找uid    ret = get_android_id(args[2]);    if (ret < 0) {        ERROR("invalid uid '%s'\n", args[2]);        free(tmp);        return;    }    uid = ret;    //从android_ids数组中查找gid    ret = get_android_id(args[3]);    if (ret < 0) {        ERROR("invalid gid '%s'\n", args[3]);        free(tmp);        return;    }    gid = ret;    //为设备文件添加权限    add_dev_perms(name, attr, perm, uid, gid, prefix);    free(tmp);}

首先检查参数的合法性,并根据参数查找uid、gid,对不同的用户和组的uid、gid已经事先配置在数组android_ids中了,如下:

static const struct android_id_info android_ids[] = {    { "root",      AID_ROOT, },    { "system",    AID_SYSTEM, },    { "radio",     AID_RADIO, },    { "bluetooth", AID_BLUETOOTH, },    { "graphics",  AID_GRAPHICS, },    { "input",     AID_INPUT, },    { "audio",     AID_AUDIO, },    { "camera",    AID_CAMERA, },    { "log",       AID_LOG, },    { "compass",   AID_COMPASS, },    { "mount",     AID_MOUNT, },    { "wifi",      AID_WIFI, },    { "dhcp",      AID_DHCP, },    { "adb",       AID_ADB, },    { "install",   AID_INSTALL, },    { "media",     AID_MEDIA, },    { "drm",       AID_DRM, },    { "mdnsr",     AID_MDNSR, },    { "nfc",       AID_NFC, },    { "drmrpc",    AID_DRMRPC, },    { "shell",     AID_SHELL, },    { "cache",     AID_CACHE, },    { "diag",      AID_DIAG, },    { "net_bt_admin", AID_NET_BT_ADMIN, },    { "net_bt",    AID_NET_BT, },    { "sdcard_r",  AID_SDCARD_R, },    { "sdcard_rw", AID_SDCARD_RW, },    { "media_rw",  AID_MEDIA_RW, },    { "vpn",       AID_VPN, },    { "keystore",  AID_KEYSTORE, },    { "usb",       AID_USB, },    { "mtp",       AID_MTP, },    { "gps",       AID_GPS, },    { "inet",      AID_INET, },    { "net_raw",   AID_NET_RAW, },    { "net_admin", AID_NET_ADMIN, },    { "net_bw_stats", AID_NET_BW_STATS, },    { "net_bw_acct", AID_NET_BW_ACCT, },    { "misc",      AID_MISC, },    { "nobody",    AID_NOBODY, },};

这些uid、gid都是以宏的形式被定义:

#define AID_ROOT             0  /* traditional unix root user */#define AID_SYSTEM        1000  /* system server */#define AID_RADIO         1001  /* telephony subsystem, RIL */#define AID_BLUETOOTH     1002  /* bluetooth subsystem */

通过调用get_android_id函数在数组android_ids中查找对应的uid、gid

static int get_android_id(const char *id){    unsigned int i;    for (i = 0; i < ARRAY_SIZE(android_ids); i++)        if (!strcmp(id, android_ids[i].name))            return android_ids[i].aid;    return 0;}

函数实现比较简单,通过遍历数组,并匹配数组元素的name属性来查找指定name的uid或gid。

最后通过add_dev_perms函数来设置设备文件的操作权限,该函数定义在system\core\init\devices.c文件中,在该文件中声明了三个链表:

static list_declare(sys_perms);static list_declare(dev_perms);static list_declare(platform_names);

add_dev_perms函数就是将解析得到的设备及设备属性,添加到指定的链表中,

使用解析得到的内容来创建一个perm_node变量,并根据条件添加到sys_perms或dev_perms链表中。

int add_dev_perms(const char *name, const char *attr,                  mode_t perm, unsigned int uid, unsigned int gid,                  unsigned short prefix) {//创建perm_node    struct perm_node *node = calloc(1, sizeof(*node));    if (!node)        return -ENOMEM;    node->dp.name = strdup(name);    if (!node->dp.name)        return -ENOMEM;    if (attr) {        node->dp.attr = strdup(attr);        if (!node->dp.attr)            return -ENOMEM;    }    //设置perm_node的成员属性    node->dp.perm = perm;    node->dp.uid = uid;    node->dp.gid = gid;    node->dp.prefix = prefix;    //根据attr 来选择添加到sys_perms或dev_perms链表中    if (attr)        list_add_tail(&sys_perms, &node->plist);    else        list_add_tail(&dev_perms, &node->plist);    return 0;}

至此ueventd.rc文件的解析工作完成了,uevent进程接下来将调用device_init()函数来初始化设备文件

void device_init(void){    suseconds_t t0, t1;    struct stat info;    int fd;#ifdef HAVE_SELINUX    struct selinux_opt seopts[] = {        { SELABEL_OPT_PATH, "/file_contexts" }    };    if (is_selinux_enabled() > 0)        sehandle = selabel_open(SELABEL_CTX_FILE, seopts, 1);#endif    /* is 64K enough? udev uses 16MB! */    //创建NETLINK socket,用于监听内核发送过来的uevent消息    device_fd = uevent_open_socket(64*1024, true);    if(device_fd < 0)        return;    //设置socket相关属性    fcntl(device_fd, F_SETFD, FD_CLOEXEC);    fcntl(device_fd, F_SETFL, O_NONBLOCK);    //查看"/dev/.coldboot_done" 文件信息    if (stat(coldboot_done, &info) < 0) {        t0 = get_usecs();        coldboot("/sys/class");        coldboot("/sys/block");        coldboot("/sys/devices");        t1 = get_usecs();        fd = open(coldboot_done, O_WRONLY|O_CREAT, 0000);        close(fd);        log_event_print("coldboot %ld uS\n", ((long) (t1 - t0)));    } else {        log_event_print("skipping coldboot, already done\n");    }}

函数首先调用uevent_open_socket 来创建PF_NETLINK socket 并绑定到指定地址上:

int uevent_open_socket(int buf_sz, bool passcred){    struct sockaddr_nl addr;    int on = passcred;    int s;        memset(&addr, 0, sizeof(addr));    addr.nl_family = AF_NETLINK;    addr.nl_pid = getpid();    addr.nl_groups = 0xffffffff;    //创建socket    s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_KOBJECT_UEVENT);    if(s < 0)        return -1;    //设置该socket属性    setsockopt(s, SOL_SOCKET, SO_RCVBUFFORCE, &buf_sz, sizeof(buf_sz));    setsockopt(s, SOL_SOCKET, SO_PASSCRED, &on, sizeof(on));    //绑定该socket    if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {        close(s);        return -1;    }    return s;}

ueventd进程接下来将通过系统调用poll函数来监控该socket,如下所示:

ufd.events = POLLIN;ufd.fd = get_device_fd();while(1) {ufd.revents = 0;nr = poll(&ufd, 1, -1);if (nr <= 0)continue;if (ufd.revents == POLLIN)   handle_device_fd();}

函数get_device_fd()返回创建的socket句柄值,并设置到ufd中,最后ueventd进程进入闭环监控模式,使用poll函数监控ufd,同时将第三个参数设置为-1,表示只有在监控的socket上有事件发生时,该函数才能返回。当热插入某一设备时,Linux内核将通过NETLINKsocket 发送uevent事件,此时poll函数得以返回,并调用handle_device_fd()函数来出来设备变化事件:

void handle_device_fd(){    char msg[UEVENT_MSG_LEN+2];    int n;//从socket中读取消息内容    while ((n = uevent_kernel_multicast_recv(device_fd, msg, UEVENT_MSG_LEN)) > 0) {//如果读取的内容长度大于1024,继续读取        if(n >= UEVENT_MSG_LEN)   /* overflow -- discard */            continue;        msg[n] = '\0';        msg[n+1] = '\0';        //将uevent消息解析成uevent类型的事件        struct uevent uevent;        parse_event(msg, &uevent);        //处理uevent事件        handle_device_event(&uevent);        handle_firmware_event(&uevent);    }}

当有设备事件发生时,poll函数返回,并从socket中读取内核发送过来的消息内容,并将该消息解析成uevent事件,同时调用handle_device_event函数和handle_firmware_event函数来分别处理设备事件或firmware事件

static void handle_device_event(struct uevent *uevent){//如果是设备添加事件    if (!strcmp(uevent->action,"add"))        fixup_sys_perms(uevent->path);    //块设备事件    if (!strncmp(uevent->subsystem, "block", 5)) {        handle_block_device_event(uevent);//平台设备事件    } else if (!strncmp(uevent->subsystem, "platform", 8)) {        handle_platform_device_event(uevent);//通用设备事件    } else {        handle_generic_device_event(uevent);    }}

 

static void handle_firmware_event(struct uevent *uevent){    pid_t pid;    int ret;    if(strcmp(uevent->subsystem, "firmware"))        return;    if(strcmp(uevent->action, "add"))        return;    //创建一个线程来专门执行firmware事件    /* we fork, to avoid making large memory allocations in init proper */    pid = fork();    if (!pid) {        process_firmware_event(uevent);        exit(EXIT_SUCCESS);    }}

具体的处理过程这里不在详细分析,读者有兴趣请自行分析!至此就介绍完了整个ueventd进程的工作,

原创粉丝点击