关于设置socket选项问题

来源:互联网 发布:吃鸡流畅优化软件 编辑:程序博客网 时间:2024/05/22 14:14

1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:
BOOL bReuseaddr=TRUE;
setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL));


2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历
TIME_WAIT的过程:
BOOL bDontLinger = FALSE;
setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL));


3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限:
int nNetTimeout=1000;//1秒
//发送时限
setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int));
//接收时限
setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int));


4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节
(异步);系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据
和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发:
// 接收缓冲区
int nRecvBuf=32*1024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int));
//发送缓冲区
int nSendBuf=32*1024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int));


5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响
程序的性能:
int nZero=0;
setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero));


6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区):
int nZero=0;
setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int));


7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性:
BOOL bBroadcast=TRUE;
setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL));


8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可
以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显著的
作用,在阻塞的函数调用中作用不大)
BOOL bConditionalAccept=TRUE;
setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL));


9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们
一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体
应用的要求(即让没发完的数据发送出去后在关闭socket)?
struct linger {
u_short l_onoff;
u_short l_linger;
};
linger m_sLinger;
m_sLinger.l_onoff=1;//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留)
// 如果m_sLinger.l_onoff=0;则功能和2.)作用相同;
m_sLinger.l_linger=5;//(容许逗留的时间为5秒)
setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger));

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

设置套接口的选项。

   #include <winsock.h>

   int PASCAL FAR setsockopt( SOCKET s, int level, int optname,
   const char FAR* optval, int optlen);

   s:标识一个套接口的描述字。
   level:选项定义的层次;目前仅支持SOL_SOCKET和IPPROTO_TCP层次。
   optname:需设置的选项。
   optval:指针,指向存放选项值的缓冲区。
   optlen:optval缓冲区的长度。

注释:
  setsockopt()函数用于任意类型、任意状态套接口的设置选项值。尽管在不同协议层上存在选项,但本函数仅定义了最高的“套接口”层次上的选项。选项影响套接口的操作,诸如加急数据是否在普通数据流中接收,广播数据是否可以从套接口发送等等。
   有两种套接口的选项:一种是布尔型选项,允许或禁止一种特性;另一种是整形或结构选项。允许一个布尔型选项,则将optval指向非零整形数;禁止一个选项optval指向一个等于零的整形数。对于布尔型选项,optlen应等于sizeof(int);对其他选项,optval指向包含所需选项的整形数或结构,而optlen则为整形数或结构的长度。SO_LINGER选项用于控制下述情况的行动:套接口上有排队的待发送数据,且closesocket()调用已执行。参见closesocket()函数中关于SO_LINGER选项对closesocket()语义的影响。应用程序通过创建一个linger结构来设置相应的操作特性:
   struct linger {
int l_onoff;
int l_linger;
   };
   为了允许SO_LINGER,应用程序应将l_onoff设为非零,将l_linger设为零或需要的超时值(以秒为单位),然后调用setsockopt()。为了允许SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff应设为零,然后调用setsockopt()。
   缺省条件下,一个套接口不能与一个已在使用中的本地地址捆绑(参见bind())。但有时会需要“重用”地址。因为每一个连接都由本地地址和远端地址的组合唯一确定,所以只要远端地址不同,两个套接口与一个地址捆绑并无大碍。为了通知WINDOWS套接口实现不要因为一个地址已被一个套接口使用就不让它与另一个套接口捆绑,应用程序可在bind()调用前先设置SO_REUSEADDR选项。请注意仅在bind()调用时该选项才被解释;故此无需(但也无害)将一个不会共用地址的套接口设置该选项,或者在bind()对这个或其他套接口无影响情况下设置或清除这一选项。
   一个应用程序可以通过打开SO_KEEPALIVE选项,使得WINDOWS套接口实现在TCP连接情况下允许使用“保持活动”包。一个WINDOWS套接口实现并不是必需支持“保持活动”,但是如果支持的话,具体的语义将与实现有关,应遵守RFC1122“Internet主机要求-通讯层”中第4.2.3.6节的规范。如果有关连接由于“保持活动”而失效,则进行中的任何对该套接口的调用都将以WSAENETRESET错误返回,后续的任何调用将以WSAENOTCONN错误返回。
   TCP_NODELAY选项禁止Nagle算法。Nagle算法通过将未确认的数据存入缓冲区直到蓄足一个包一起发送的方法,来减少主机发送的零碎小数据包的数目。但对于某些应用来说,这种算法将降低系统性能。所以TCP_NODELAY可用来将此算法关闭。应用程序编写者只有在确切了解它的效果并确实需要的情况下,才设置TCP_NODELAY选项,因为设置后对网络性能有明显的负面影响。TCP_NODELAY是唯一使用IPPROTO_TCP层的选项,其他所有选项都使用SOL_SOCKET层。
   如果设置了SO_DEBUG选项,WINDOWS套接口供应商被鼓励(但不是必需)提供输出相应的调试信息。但产生调试信息的机制以及调试信息的形式已超出本规范的讨论范围。
  setsockopt()支持下列选项。其中“类型”表明optval所指数据的类型。
选项        类型   意义
SO_BROADCAST BOOL 允许套接口传送广播信息。
SO_DEBUG BOOL 记录调试信息。
SO_DONTLINER BOOL 不要因为数据未发送就阻塞关闭操作。设置本选项相当于将SO_LINGER的l_onoff元素置为零。
SO_DONTROUTE BOOL 禁止选径;直接传送。
SO_KEEPALIVE BOOL 发送“保持活动”包。
SO_LINGER struct linger FAR*   如关闭时有未发送数据,则逗留。
SO_OOBINLINE BOOL 在常规数据流中接收带外数据。
SO_RCVBUF int 为接收确定缓冲区大小。
SO_REUSEADDR BOOL 允许套接口和一个已在使用中的地址捆绑(参见bind())。
SO_SNDBUF int 指定发送缓冲区大小。
TCP_NODELAY BOOL 禁止发送合并的Nagle算法。

  setsockopt()不支持的BSD选项有:
选项名    类型 意义
SO_ACCEPTCONN BOOL 套接口在监听。
SO_ERROR int 获取错误状态并清除。
SO_RCVLOWAT int 接收低级水印。
SO_RCVTIMEO int 接收超时。
SO_SNDLOWAT int 发送低级水印。
SO_SNDTIMEO int 发送超时。
SO_TYPE     int 套接口类型。
IP_OPTIONS    在IP头中设置选项。

返回值:
   若无错误发生,setsockopt()返回0。否则的话,返回SOCKET_ERROR错误,应用程序可通过WSAGetLastError()获取相应错误代码。

错误代码:
   WSANOTINITIALISED:在使用此API之前应首先成功地调用WSAStartup()。
   WSAENETDOWN:WINDOWS套接口实现检测到网络子系统失效。
   WSAEFAULT:optval不是进程地址空间中的一个有效部分。
   WSAEINPROGRESS:一个阻塞的WINDOWS套接口调用正在运行中。
   WSAEINVAL:level值非法,或optval中的信息非法。
   WSAENETRESET:当SO_KEEPALIVE设置后连接超时。
   WSAENOPROTOOPT:未知或不支持选项。其中,SOCK_STREAM类型的套接口不支持SO_BROADCAST选项,SOCK_DGRAM类型的套接口不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE选项。
   WSAENOTCONN:当设置SO_KEEPALIVE后连接被复位。
   WSAENOTSOCK:描述字不是一个套接口。

参见:
   bind(), getsockopt(), ioctlsocket(), socket(), WSAAsyncSelect().

copy from:http://blog.csdn.net/qinmi/archive/2007/03/07/1523081.aspx



tcp收发需要缓冲区,udp不需要缓冲区

(一)基础知识

 

  • IPv4 数据报最大大小是65535(16位),包括IPv4头部。
  • IPv6 数据报最大大小是65575,包括40个字节的IPv4头部
  • MTU,这是由硬件规定的,如以太网的MTU是1500字节,IPv4要求最小MTU是68字节,IPv6要求最小MTU是576字节
  • path MTU: 指两台主机间的路径上最小MTU
  • 分片(fragmentation):指ip数据报大小超过相应链路的MTU,IPv4和IPv6都将对ip数据进行分片,到达目的主机后进行重组。
  • IPv4头部的DF位用于设置分片还是不分片
  • MSS:最大分节大小,向对方TCP通告被通告方在每个分节中能发送的最大TCP数据量。MSS的目的是告诉对方其重组缓冲区大小的实际值,从而避免分片。

 


(二)TCP与UDP的输出

每个TCP套接口有一个发送缓冲区,可以用SO_SNDBUF套接口选项来改变这一缓冲区的大小。当应用进程调用write往套接口写数据时,内核从应用进程缓冲区中拷贝所有数据到套接口的发送缓冲区,如果套接口发送缓冲区容不下应用程序的所有数据,或者是应用进程的缓冲区大于套接口的发送缓冲区,或者是套接口的发送缓冲区中有别的数据,应用进程将被挂起。内核将不从write返回。直到应用进程缓冲区中的所有数据都拷贝到套接口发送缓冲区。所以,从写一个TCP套接口的write调用成功返回仅仅表示我们可以重新使用应用进程缓冲区,它并不是告诉我们对方收到数据。TCP发给对方的数据,对方在收到数据时必须给矛确认,只有在收到对方的确认时,本方TCP才会把TCP发送缓冲区中的数据删除。

UDP因为是不可靠连接,不必保存应用进程的数据拷贝,应用进程中的数据在沿协议栈向下传递时,以某种形式拷贝到内核缓冲区,当数据链路层把数据传出后就把内核缓冲区中数据拷贝删除。因此它不需要一个发送缓冲区。写UDP套接口的write返回表示应用程序的数据或数据分片已经进入链路层的输出队列,如果输出队列没有足够的空间存放数据,将返回错误ENOBUFS.

 

 

 

(三)tcp socket的发送与接收缓冲区  

 

  应用程序可通过调用send(write, sendmsg等)利用tcp socket向网络发送应用数据,而tcp/ip协议栈再通过网络设备接口把已经组织成struct sk_buff的应用数据(tcp数据报)真正发送到网络上,由于应用程序调用send的速度跟网络介质发送数据的速度存在差异,所以,一部分应用数据被组织成tcp数据报之后,会缓存在tcp socket的发送缓存队列中,等待网络空闲时再发送出去。同时,tcp协议要求对端在收到tcp数据报后,要对其序号进行ACK,只有当收到一个tcp 数据报的ACK之后,才可以把这个tcp数据报(以一个struct sk_buff的形式存在)从socket的发送缓冲队列中清除。
  tcp socket的发送缓冲区实际上是一个结构体struct sk_buff的队列,我们可以把它称为发送缓冲队列,由结构体struct sock的成员sk_write_queue表示。sk_write_queue是一个结构体struct sk_buff_head类型,这是一个struct sk_buff的双向链表,其定义如下:


    struct sk_buff_head {
        struct sk_buff  *next;      //后指针
        struct sk_buff  *prev;      //前指针
        __u32             qlen;       //队列长度(即含有几个struct sk_buff)
        spinlock_t        lock;       //链表锁
    };


(1)

  内核代码中,先在这个队列中创建足够存放数据的struct sk_buff,然后向队列存入应用数据。
  结构体struct sock的成员sk_wmem_queued表示发送缓冲队列中已分配的字节数,一般来说,分配一个struct sk_buff是用于存放一个tcp数据报,其分配字节数应该是MSS+协议首部长度。在我的实验环境中,MSS值是1448,协议首部取最大长度 MAX_TCP_HEADER,在我的实验环境中为224。经数据对齐处理后,最后struct sk_buff的truesize为1956。也就是队列中每分配一个struct sk_buff,成员sk_wmem_queue的值就增加1956。
    struct sock的成员sk_forward_alloc是表示预分配长度。当我们第一次要为发送缓冲队列分配一个struct sk_buff时,我们并不是直接分配需要的内存大小,而是会以内存页为单位进行的预分配。
    tcp协议分配struct sk_buff的函数是sk_stream_alloc_pskb。它首先根据传入的参数指定的大小在内存中分配一个struct sk_buff,如果成功,sk_forward_alloc取该大小值,并向上取整到页(4096字节)的整数倍。并累加到struct sock的成员sk_prot,也即表示tcp协议的结构体mytcp_prot的成员memory_allocated中,该成员是一个指针,指向变量 tcp_memory_allocated,它表示的是当前整个TCP协议当前为缓冲区所分配的内存(包括读缓冲队列)
    当把这个新分配成功的struct sk_buff放入到缓冲队列sk_write_queue后,从sk_forward_alloc中减去该sk_buff的truesize值。第二次分配struct sk_buff时,只要再从sk_forward_alloc中减去新的sk_buff的truesize即可,如果sk_forward_alloc已经小于当前的truesize,则将其再加上一个页的整数倍值,并累加入tcp_memory_allocated。
    也就是说,通过sk_forward_alloc使全局变量tcp_memory_allocated保存当前tcp协议总的缓冲区分配内存的大小,并且该大小是页边界对齐的。

 

(2)

 

  前面讲到struct sock的成员sk_forward_alloc表示预分配内存大小,用于向全局变量mytcp_memory_allocated累加当前已分配的整个TCP协议的缓冲区大小。之所以要累加这个值,是为了对tcp协议总的可用缓冲区大小作限制。表示TCP协议的结构体mytcp_prot还有几个成员与缓冲区相关。
  mysysctl_tcp_mem是一个数组,由mytcp_prot的成员sysctl_mem指向,数组共有三个元素,mysysctl_tcp_mem[0]表示对缓冲区总的可用大小的最低限制,当前总共分配的缓冲区大小低于这个值,则没有问题,分配成功。 mysysctl_tcp_mem[2]表示对缓冲区可用大小的最高硬性限制,一旦总分配的缓冲区大小超出这个值,我们只好把tcp socket 的发送缓冲区的预设大小sk_sndbuf减小为已分配缓冲队列大小的一半,但不能小于SOCK_MIN_SNDBUF(2K),但保证这一次的分配成功。mysysctl_tcp_mem[1]介于前面两个值的中间,这是一个警告值,一旦超出这个值,进入警告状态,这个状态下,根据调用参数来决定此次分配是否成功。
    这三个值的大小是根据所在系统的内存大小,在初始化时决定的,在我的实验环境中,内存大小为256M,这三个值分配是:96K,128K,192K。它们可以通过/proc文件系统,在/proc/sys/net/ipv4/tcp_mem中进行修改。当然,除非特别需要,一般无需改动这些缺省值。
    mysysctl_tcp_wmem也是一个同样结构的数组,表示发送缓冲区的大小限制,由mytcp_prot的成员sysctl_wmem指向,其缺省值分别是4K,16K,128K。可以通过/proc文件系统,在/proc/sys/net/ipv4/tcp_wmem中进行修改。struct sock的成员sk_sndbuf的值是真正的发送缓冲队列的预设大小,其初始值取中间一个16K。在tcp数据报的发送过程中,一旦 sk_wmem_queued超过sk_sndbuf的值,则发送停止,等待发送缓冲区可用。因为有可能一批已发送出去的数据还没有收到ACK,同时,缓冲队列中的数据也可全部发出去,已达到清空缓冲队列的目的,所以,只要在网络不是很差的情况下(差到没有办法收到ACK),这个等待在一段时间后会成功的。
    全局变量mytcp_memory_pressure是一个标志,在tcp缓冲大小进入警告状态时,它置1,否则置0。

 

(3)

 

  mytcp_sockets_allocated是到目前为止,整个tcp协议中创建的socket的个数,由mytcp_prot的成员 sockets_allocated指向。可以在/proc/net/sockstat文件中查看,这只是一个供统计查看用的数据,没有任何实际的限制作用。
  mytcp_orphan_count表示整个tcp协议中待销毁的socket的个数(已无用的socket),由mytcp_prot的成员orphan_count指向,也可以在/proc/net/sockstat文件中查看。
  mysysctl_tcp_rmem是跟mysysctl_tcp_wmem相同结构的数组,表示接收缓冲区的大小限制,由mytcp_prot的成员 sysctl_rmem指向,其缺省值分别是4096bytes,87380bytes,174760bytes。它们可以通过/proc文件系统,在 /proc/sys/net/ipv4/tcp_rmem中进行修改。struct sock的成员sk_rcvbuf表示接收缓冲队列的大小,其初始值取mysysctl_tcp_rmem[1],成员sk_receive_queue 是接收缓冲队列,结构跟sk_write_queue相同。
  tcp socket的发送缓冲队列跟接收缓冲队列的大小既可以通过/proc文件系统进行修改,也可以通过TCP选项操作进行修改。套接字级别上的选项 SO_RCVBUF可用于获取和修改接收缓冲队列的大小(即strcut sock->sk_rcvbuf的值),比如下列的代码可用于获取当前系统的接收缓冲队列大小:


    int rcvbuf_len;
    int len = sizeof(rcvbuf_len);
    if( getsockopt( fd, SOL_SOCKET, SO_RCVBUF, (void *)&rcvbuf_len, &len ) < 0 ){
        perror("getsockopt: ");
        return -1;
    }
    printf("the recevice buf len: %d\n", rcvbuf_len );


    而套接字级别上的选项SO_SNDBUF则用于获取和修改发送缓冲队列的大小(即struct sock->sk_sndbuf的值),代码同上,只需改SO_RCVBUF为SO_SNDBUF即可。
    获取发送和接收缓冲区的大小相对简单一些,而设置的操作在内核中动作会稍微复杂一些,另外,在接口上也会有所差异,即由setsockopt传入的表示缓冲区大小的参数是实际大小的1/2,即,如果想要设发送缓冲区的大小为20K,则需要这样调用setsockopt:


     int rcvbuf_len = 10 * 1024;  //实际缓冲区大小的一半。
     int len = sizeof(rcvbuf_len);
     if( setsockopt( fd, SOL_SOCKET, SO_SNDBUF, (void *)&rcvbuf_len, len ) < 0 ){
        perror("getsockopt: ");
        return -1;
     }


    在内核中,首先内核要判断新设置的值是否超过上限,若超过,则取上限为新值,发送和接收缓冲区大小的上限值分别为sysctl_wmem_max和 sysctl_rmem_max的2倍。这两个全局变量的值是相等的,都为(sizeof(struct sk_buff) + 256) * 256,大概为64K负载数据,由于struct sk_buff的影响,实际发送和接收缓冲区的大小最大都可设到210K左右。它们的下限是2K,即缓冲区大小不能低于2K。
    另外,SO_SNDBUF和SO_RCVBUF有一个特殊的版本:SO_SNDBUFFORCE和SO_RCVBUFFORCE,它们不受发送和接收缓冲区大小上限的限制,可设置不小于2K的任意缓冲区大小


原创粉丝点击