机器学习实战之决策树

来源:互联网 发布:c51 c语言 编辑:程序博客网 时间:2024/05/18 01:51
from math import logimport operatorimport  matplotlib.pyplot as pltdef calcShannonEnt(dataSet):    numEntries = len(dataSet)    labelCounts = {}    for featVec in dataSet:        currentLabel = featVec[-1]        if currentLabel not in labelCounts.keys():            labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1        shannonEnt = 0.0    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob * log(prob,2)    return shannonEntdef createDataSet():    dataSet = [[1,1,'yes'],               [1,1,'yes'],               [1,0,'no'],               [0,1,'no'],               [0,1,'no']]    labels = ['no surfacing', 'flippers']    return dataSet, labelsdef splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet:        if featVec[axis] == value:            reducedFeatVec = featVec[:axis]            reducedFeatVec.extend(featVec[axis+1:])            retDataSet.append(reducedFeatVec)    return retDataSetdef chooseBestFeatureToSplit(dataSet):    numFeatures = len(dataSet[0])-1    baseEntropy = calcShannonEnt(dataSet)    bestInfoGain = 0.0    bestFeature = -1        for i in range(numFeatures):        featList = [example[i] for example in dataSet]        uniqueVals = set(featList)        newEntropy = 0.0        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob * calcShannonEnt(subDataSet)        infoGain = baseEntropy - newEntropy        if (infoGain > bestInfoGain):            bestInfoGain = infoGain            bestFeature = i    return bestFeaturedef majorityCnt(classList):    classCount = {}    for vote in classList:        if vote not in classCount.keys():             classCount[vote] = 0        classCount[vote] += 1    sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1), resverse = True)def createTree(dataSet, labels):    classList = [example[-1] for example in dataSet]    if classList.count(classList[0]) == len(classList):        return classList[0]        if len(dataSet[0]) == 1:        return majorityCnt(classList)        bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    myTree = {bestFeatLabel:{}}    del(labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in featValues:        subLabels = labels[:]        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)    return myTree# myDat,labels = createDataSet()# myTree = createTree(myDat, labels)# print myTreedecisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round4", fc="0.8")arrow_args = dict(arrowstyle="<-")   #  "->":text->point "<-":text <- pointdef plotNode(nodeTxt, centerPt, parentPt, nodeType):    createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',xytext=centerPt,textcoords='axes fraction',va="center",ha="center",bbox=nodeType,arrowprops=arrow_args)    # def createPlot():#     fig = plt.figure(1, facecolor='white')#     fig.clf()#     createPlot.ax1 = plt.subplot(111,frameon=False)#     plotNode('a decision node',(0.5,0.1),(0.1,0.1),decisionNode)#     plotNode('a leaf node', (0.8,0.1),(0.3,0.8),leafNode)#     plt.show()    def getNumleafs(myTree):    numLeafs = 0    firstStr = myTree.keys()[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            numLeafs += getNumleafs(secondDict[key])        else: numLeafs += 1    return numLeafsdef getTreeDepth(myTree):    maxDepth = 0    firstStr = myTree.keys()[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            thisDepth = 1 + getTreeDepth(secondDict[key])        else:            thisDepth = 1        if thisDepth > maxDepth: maxDepth = thisDepth    return maxDepthdef retrieveTree(i):    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}                  ]    return listOfTrees[i]# myTree = retrieveTree(0)# print getNumleafs(myTree)# print getTreeDepth(myTree)def plotMidText(contrPt, parentPt, txtString):    xMid = (parentPt[0] - contrPt[0])/2.0 + contrPt[0]    yMid = (parentPt[1] - contrPt[1])/2.0 + contrPt[1]    createPlot.ax1.text(xMid,yMid,txtString)    def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on    numLeafs = getNumleafs(myTree)  #this determines the x width of this tree    depth = getTreeDepth(myTree)    firstStr = myTree.keys()[0]     #the text label for this node should be this    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    plotMidText(cntrPt, parentPt, nodeTxt)    plotNode(firstStr, cntrPt, parentPt, decisionNode)    secondDict = myTree[firstStr]    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD    for key in secondDict.keys():        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes               plotTree(secondDict[key],cntrPt,str(key))        #recursion        else:   #it's a leaf node print the leaf node            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD#if you do get a dictonary you know it's a tree, and the first element will be another dictdef createPlot(inTree):    fig = plt.figure(1, facecolor='white')    fig.clf()    axprops = dict(xticks=[], yticks=[])    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses     plotTree.totalW = float(getNumleafs(inTree))    plotTree.totalD = float(getTreeDepth(inTree))    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;    plotTree(inTree, (0.5,1.0), '')    plt.show()    def classify(inputTree, featLabels, testVec):    firstStr = inputTree.keys()[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr)    for key in secondDict.keys():        if testVec[featIndex] == key:            if type(secondDict[key]).__name__ == 'dict':                classLabel = classify(secondDict[key],featLabels,testVec)            else: classLabel = secondDict[key]    return classLabeldef storeTree(inputTree,filename):    import pickle    fw = open(filename,'wb')    pickle.dumps(inputTree, fw)    fw.close()    def grabtree(filename):    import pickle    fw = open(filename,'rb')    return pickle.load(fw)

原创粉丝点击