Communication

来源:互联网 发布:路由器网络参数设置 编辑:程序博客网 时间:2024/05/01 11:29

RIL层的作用大体上就是将上层的命令转换成相应的AT指令,控制modem工作。生产modem的厂家有很多:Qualcomm, STE, Infineon... 不同的厂家都有各自的特点,当然也会有各自不同的驱动,但驱动代码的公开多少会涉及到modem厂家的技术细节,所以,Android系统开源了绝大部分代码,对于 部分驱动(Reference-RIL)  允许厂家以二进制Lib的形式成为一套完整Android系统的一部分。

有Lib就需要有加载的概念,能够加载各种驱动说明驱动们都遵从一个统一的接口。这个接口是什么?RILC又是如何接收并处理RILJ向下传来的请求?

 


进入hardware\ril\rild\rild.c,一切从main开始。

int main(int argc, char **argv){    ... ...    dlHandle = dlopen(rilLibPath, RTLD_NOW);    if (dlHandle == NULL) {        fprintf(stderr, "dlopen failed: %s\n", dlerror());        exit(-1);    }    RIL_startEventLoop();    // ril_event    rilInit = (const RIL_RadioFunctions *(*)(const struct RIL_Env *, int, char **))dlsym(dlHandle, "RIL_Init");    if (rilInit == NULL) {        fprintf(stderr, "RIL_Init not defined or exported in %s\n", rilLibPath);        exit(-1);    }    ... ...    funcs = rilInit(&s_rilEnv, argc, rilArgv);   // Reference-RIL 获得 LibRIL 的Interface       RIL_register(funcs);   // LibRIL 获得 Reference-RIL 的Interface   }

 

从dlopen看到了动态加载的痕迹,加载Reference-RIL之后便启动了监听线程,也就在RIL_startEventLoop。每一次从上层传来的请求都是一个event,可见要了解该层的消息传输,关键是要了解  结构体 ril_event

与其相关的文件是ril_event.h、ril_event.cpp,对于文件的分析还是引用ACE1985兄台的博文为好,抱拳为敬。

ril_event.h

// 每次监视的最大的文件描述符句柄数,可以根据需要自行修改#define MAX_FD_EVENTS 8// ril_event的回调函数typedef void (*ril_event_cb)(int fd, short events, void *userdata);struct ril_event {    // 用于将ril_event串成双向链表的前向指针和后向指针    struct ril_event *next;    struct ril_event *prev;        //ril事件相关的文件描述符句柄(可以是文件、管道、Socket等)    int fd;        //这个事件在监控列表中的索引    int index;        //当一个事件处理完后(即从watch_table移到pending_list中等待处理),    //persist参数决定这个事件是否一直存在于监控列表watch_table[]中    bool persist;        //事件的超时时间    struct timeval timeout;        //回调函数及其传入的参数    ril_event_cb func;    void *param;};//以下是ril事件相关的一些操作函数// 初始化内部数据结构void ril_event_init();// 初始化一个ril事件void ril_event_set(struct ril_event * ev, int fd, bool persist, ril_event_cb func, void * param);// 将事件添加到监控列表watch_table[]中void ril_event_add(struct ril_event * ev);// 增加一个timer事件到timer_list链表中void ril_timer_add(struct ril_event * ev, struct timeval * tv);// 将指定的事件从监控列表watch_table[]中移除void ril_event_del(struct ril_event * ev);// 事件循环void ril_event_loop();
View Code

ril_event.c

#define LOG_TAG "RILC"#include <stdlib.h>#include <unistd.h>#include <errno.h>#include <fcntl.h>#include <utils/Log.h>#include <ril_event.h>#include <string.h>#include <sys/time.h>#include <time.h>#include <pthread.h>// 使用互斥量mutex进行线程同步,可参见《Linux程序设计》相关章节static pthread_mutex_t listMutex;#define MUTEX_ACQUIRE() pthread_mutex_lock(&listMutex)#define MUTEX_RELEASE() pthread_mutex_unlock(&listMutex)#define MUTEX_INIT() pthread_mutex_init(&listMutex, NULL)#define MUTEX_DESTROY() pthread_mutex_destroy(&listMutex)// 两个timeval类型的值相加#ifndef timeradd#define timeradd(tvp, uvp, vvp)                        \    do {                                \        (vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;        \        (vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;       \        if ((vvp)->tv_usec >= 1000000) {            \            (vvp)->tv_sec++;                \            (vvp)->tv_usec -= 1000000;            \        }                            \    } while (0)#endif// 两个timeval类型的值进行比较#ifndef timercmp#define timercmp(a, b, op)               \        ((a)->tv_sec == (b)->tv_sec      \        ? (a)->tv_usec op (b)->tv_usec   \        : (a)->tv_sec op (b)->tv_sec)#endif// 两个timeval类型的值相减#ifndef timersub#define timersub(a, b, res)                           \    do {                                              \        (res)->tv_sec = (a)->tv_sec - (b)->tv_sec;    \        (res)->tv_usec = (a)->tv_usec - (b)->tv_usec; \        if ((res)->tv_usec < 0) {                     \            (res)->tv_usec += 1000000;                \            (res)->tv_sec -= 1;                       \        }                                             \    } while(0);#endi// 保存Rild中所有设备文件句柄,便于使用select函数完成事件的监听static fd_set readFds;// 记录readFds中最大fd值+1static int nfds = 0;// 为了统一管理ril事件,Android提供如下三个队列:// 监控事件列表,需要检测的事件都需要先存入该列表中static struct ril_event * watch_table[MAX_FD_EVENTS];// timer事件队列,事件超时后即移入pending_list队列中static struct ril_event timer_list;// 待处理的事件队列,即事件已经触发,后续需要调用事件的回调函数static struct ril_event pending_list;#define DEBUG 0#if DEBUG#define dlog(x...) LOGD( x )static void dump_event(struct ril_event * ev){    dlog("~~~~ Event %x ~~~~", (unsigned int)ev);    dlog("     next    = %x", (unsigned int)ev->next);    dlog("     prev    = %x", (unsigned int)ev->prev);    dlog("     fd      = %d", ev->fd);    dlog("     pers    = %d", ev->persist);    dlog("     timeout = %ds + %dus", (int)ev->timeout.tv_sec, (int)ev->timeout.tv_usec);    dlog("     func    = %x", (unsigned int)ev->func);    dlog("     param   = %x", (unsigned int)ev->param);    dlog("~~~~~~~~~~~~~~~~~~");}#else#define dlog(x...) do {} while(0)#define dump_event(x) do {} while(0)#endif// 获取此刻timeval值static void getNow(struct timeval * tv){#ifdef HAVE_POSIX_CLOCKS    struct timespec ts;    clock_gettime(CLOCK_MONOTONIC, &ts);    tv->tv_sec = ts.tv_sec;    tv->tv_usec = ts.tv_nsec/1000;#else    gettimeofday(tv, NULL);#endif}// 初始化指定的ril_event链表static void init_list(struct ril_event * list){    memset(list, 0, sizeof(struct ril_event));    list->next = list;    list->prev = list;    list->fd = -1;}// 增加一个ril_event事件到ril_event队列头static void addToList(struct ril_event * ev, struct ril_event * list){    ev->next = list;    ev->prev = list->prev;    ev->prev->next = ev;    list->prev = ev;    dump_event(ev);}// 从ril_event队列中移除指定的ril_eventstatic void removeFromList(struct ril_event * ev){    dlog("~~~~ Removing event ~~~~");    dump_event(ev);    ev->next->prev = ev->prev;    ev->prev->next = ev->next;    ev->next = NULL;    ev->prev = NULL;}// 从watch_table[]中移除指定索引的事件static void removeWatch(struct ril_event * ev, int index){    // 索引index对应的事件置为空,同时事件ev的索引设为无效值-1    watch_table[index] = NULL;    ev->index = -1;    // 将该事件对应的文件描述符句柄从readFds中清除    FD_CLR(ev->fd, &readFds);    if (ev->fd+1 == nfds) {        int n = 0;        for (int i = 0; i < MAX_FD_EVENTS; i++) {            struct ril_event * rev = watch_table[i];            if ((rev != NULL) && (rev->fd > n)) {                n = rev->fd;            }        }        nfds = n + 1;        dlog("~~~~ nfds = %d ~~~~", nfds);    }}// 遍历timer_list队列中的事件,当事件超时时间到时// 将事件移除,并添加到pending_list队列中static void processTimeouts(){    dlog("~~~~ +processTimeouts ~~~~");    MUTEX_ACQUIRE();    struct timeval now;    struct ril_event * tev = timer_list.next;    struct ril_event * next;    getNow(&now);    // walk list, see if now >= ev->timeout for any events    dlog("~~~~ Looking for timers <= %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);    while ((tev != &timer_list) && (timercmp(&now, &tev->timeout, >))) {        // Timer expired        dlog("~~~~ firing timer ~~~~");        next = tev->next;        removeFromList(tev);        addToList(tev, &pending_list);        tev = next;    }    MUTEX_RELEASE();    dlog("~~~~ -processTimeouts ~~~~");}// 遍历监控列表watch_table[]中的事件,并将有数据可读的事件// 添加到pending_list链表中,同时如果事件的persist不为true// 则将该事件从watch_table[]中移除static void processReadReadies(fd_set * rfds, int n){    dlog("~~~~ +processReadReadies (%d) ~~~~", n);    MUTEX_ACQUIRE();    for (int i = 0; (i < MAX_FD_EVENTS) && (n > 0); i++) {        struct ril_event * rev = watch_table[i];        if (rev != NULL && FD_ISSET(rev->fd, rfds)) {            addToList(rev, &pending_list);            if (rev->persist == false) {                removeWatch(rev, i);            }            n--;        }    }    MUTEX_RELEASE();    dlog("~~~~ -processReadReadies (%d) ~~~~", n);}// 依次调用待处理队列pending_list中的事件的回调函数static void firePending(){    dlog("~~~~ +firePending ~~~~");    struct ril_event * ev = pending_list.next;    while (ev != &pending_list) {        struct ril_event * next = ev->next;        removeFromList(ev);        ev->func(ev->fd, 0, ev->param);        ev = next;    }    dlog("~~~~ -firePending ~~~~");}// 计算timer_list链表中下一个事件的新的超时时间static int calcNextTimeout(struct timeval * tv){    struct ril_event * tev = timer_list.next;    struct timeval now;    getNow(&now);    // Sorted list, so calc based on first node    if (tev == &timer_list) {        // no pending timers        return -1;    }    dlog("~~~~ now = %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);    dlog("~~~~ next = %ds + %dus ~~~~",            (int)tev->timeout.tv_sec, (int)tev->timeout.tv_usec);    if (timercmp(&tev->timeout, &now, >)) {        timersub(&tev->timeout, &now, tv);    } else {        // timer already expired.        tv->tv_sec = tv->tv_usec = 0;    }    return 0;}// 初始化内部数据结构(互斥量、FD集合、三个事件队列)void ril_event_init(){    MUTEX_INIT();    FD_ZERO(&readFds);    init_list(&timer_list);    init_list(&pending_list);    memset(watch_table, 0, sizeof(watch_table));}// 初始化一个ril事件void ril_event_set(struct ril_event * ev, int fd, bool persist, ril_event_cb func, void * param){    dlog("~~~~ ril_event_set %x ~~~~", (unsigned int)ev);    memset(ev, 0, sizeof(struct ril_event));    ev->fd = fd;    ev->index = -1;    ev->persist = persist;    ev->func = func;    ev->param = param;        //linux的文件上锁函数,给文件描述符fd上非阻塞的文件锁    fcntl(fd, F_SETFL, O_NONBLOCK);}// 将事件添加到监控列表watch_table[]中void ril_event_add(struct ril_event * ev){    dlog("~~~~ +ril_event_add ~~~~");    MUTEX_ACQUIRE();    for (int i = 0; i < MAX_FD_EVENTS; i++) {        if (watch_table[i] == NULL) {            watch_table[i] = ev;            ev->index = i;            dlog("~~~~ added at %d ~~~~", i);            dump_event(ev);            FD_SET(ev->fd, &readFds);            if (ev->fd >= nfds) nfds = ev->fd+1;            dlog("~~~~ nfds = %d ~~~~", nfds);            break;        }    }    MUTEX_RELEASE();    dlog("~~~~ -ril_event_add ~~~~");}// 增加一个timer事件到timer_list链表中void ril_timer_add(struct ril_event * ev, struct timeval * tv){    dlog("~~~~ +ril_timer_add ~~~~");    MUTEX_ACQUIRE();    struct ril_event * list;    if (tv != NULL) {        // add to timer list        list = timer_list.next;        ev->fd = -1; // make sure fd is invalid        struct timeval now;        getNow(&now);        timeradd(&now, tv, &ev->timeout);        // 根据timeout值从小到大在链表中排序        while (timercmp(&list->timeout, &ev->timeout, < )                && (list != &timer_list)) {            list = list->next;        }        // 循环结束后,list指向链表中第一个timeout值大于ev的事件    // 将新加入的事件ev加到list此刻指向的事件前面        addToList(ev, list);    }    MUTEX_RELEASE();    dlog("~~~~ -ril_timer_add ~~~~");}// 将事件从watch_table[]中移除void ril_event_del(struct ril_event * ev){    dlog("~~~~ +ril_event_del ~~~~");    MUTEX_ACQUIRE();    if (ev->index < 0 || ev->index >= MAX_FD_EVENTS) {        MUTEX_RELEASE();        return;    }    removeWatch(ev, ev->index);    MUTEX_RELEASE();    dlog("~~~~ -ril_event_del ~~~~");}#if DEBUG// 打印监控列表中可用的事件static void printReadies(fd_set * rfds){    for (int i = 0; (i < MAX_FD_EVENTS); i++) {        struct ril_event * rev = watch_table[i];        if (rev != NULL && FD_ISSET(rev->fd, rfds)) {          dlog("DON: fd=%d is ready", rev->fd);        }    }}#else#define printReadies(rfds) do {} while(0)#endifvoid ril_event_loop(){    int n;    fd_set rfds;    struct timeval tv;    struct timeval * ptv;    for (;;) {        // make local copy of read fd_set        memcpy(&rfds, &readFds, sizeof(fd_set));    // 根据timer_list来计算select函数的等待时间    // timer_list之前已按事件的超时时间排好序了        if (-1 == calcNextTimeout(&tv)) {            // no pending timers; block indefinitely            dlog("~~~~ no timers; blocking indefinitely ~~~~");            ptv = NULL;        } else {            dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec);            ptv = &tv;        }        printReadies(&rfds);    // 使用select函数实现多路IO复用        n = select(nfds, &rfds, NULL, NULL, ptv);        printReadies(&rfds);        dlog("~~~~ %d events fired ~~~~", n);        if (n < 0) {            if (errno == EINTR) continue;            LOGE("ril_event: select error (%d)", errno);            // bail?            return;        }        // Check for timeouts        processTimeouts();        // Check for read-ready        processReadReadies(&rfds, n);        // Fire away        firePending();    }}
View Code

 

若干ril_event构成watch_table数组,同时也被两个双向链表timer_list、pending_list串起来,不禁想起了内核链表。select对watch_table数组上的ril_event们进行监听。

RILJ与RILC通过socket连接,前者为client,后者为server。

server通过select监听对外开放的socket端口fd,若RILJ请求连接,则回调listenCallback(),accept()出一个s_fdCommand,加入select监听数组,这个s_fdCommand便成为了上层传入请求的通道,RILC通过这个通道接收具体的command,而后转化为AT指令。

 

static struct ril_event s_commands_event;static struct ril_event s_wakeupfd_event;static struct ril_event s_listen_event;static struct ril_event s_wake_timeout_event;static struct ril_event s_debug_event;

 

以上便是大致的思路,select+socket连接的经典模式。通道打通后,从s_fdCommand中到底会接收到什么?

ril_event_set (&s_commands_event, s_fdCommand, 1,        processCommandsCallback, p_rs);

函数层层嵌套,终会有一个办实事的命令。

static intprocessCommandBuffer(void *buffer, size_t buflen) {    Parcel p;    status_t status;    int32_t request;    int32_t token;    RequestInfo *pRI;    //构造该结构体,尤其是其中的pCI    int ret;    p.setData((uint8_t *) buffer, buflen);    //获得有效p    // status checked at end    status = p.readInt32(&request);           //取得request值    status = p.readInt32 (&token);    if (status != NO_ERROR) {        LOGE("invalid request block");        return 0;    }    if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {        LOGE("unsupported request code %d token %d", request, token);        // FIXME this should perhaps return a response        return 0;    }    pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));    pRI->token = token;    pRI->pCI = &(s_commands[request]);    //确定早已待命的command号    ret = pthread_mutex_lock(&s_pendingRequestsMutex);    assert (ret == 0);    pRI->p_next = s_pendingRequests;    s_pendingRequests = pRI;    ret = pthread_mutex_unlock(&s_pendingRequestsMutex);    assert (ret == 0);/*    sLastDispatchedToken = token; */    pRI->pCI->dispatchFunction(p, pRI);    //命令,发射!    return 0;}

Ok,这个办实事的命令就是s_comands数组第request个结构体中的dispatchFunction().

s_comands数组是个啥?

 

static CommandInfo s_commands[] = {#include "ril_commands.h"};

typedef struct {
    int requestNumber;
    void (*dispatchFunction) (Parcel &p, struct RequestInfo *pRI);
    int (*responseFunction) (Parcel &p, void *response, size_t responselen);
} CommandInfo;

Ref: http://blog.csdn.net/ace1985/article/details/7051522

  1     {0, NULL, NULL},                   //none  2     {RIL_REQUEST_GET_SIM_STATUS, dispatchVoid, responseSimStatus},  3     {RIL_REQUEST_ENTER_SIM_PIN, dispatchStrings, responseInts},  4     {RIL_REQUEST_ENTER_SIM_PUK, dispatchStrings, responseInts},  5     {RIL_REQUEST_ENTER_SIM_PIN2, dispatchStrings, responseInts},  6     {RIL_REQUEST_ENTER_SIM_PUK2, dispatchStrings, responseInts},  7     {RIL_REQUEST_CHANGE_SIM_PIN, dispatchStrings, responseInts},  8     {RIL_REQUEST_CHANGE_SIM_PIN2, dispatchStrings, responseInts},  9     {RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, dispatchStrings, responseInts}, 10     {RIL_REQUEST_GET_CURRENT_CALLS, dispatchVoid, responseCallList}, 11     {RIL_REQUEST_DIAL, dispatchDial, responseVoid}, 12     {RIL_REQUEST_GET_IMSI, dispatchVoid, responseString}, 13     {RIL_REQUEST_HANGUP, dispatchInts, responseVoid}, 14     {RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND, dispatchVoid, responseVoid}, 15     {RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND, dispatchVoid, responseVoid}, 16     {RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE, dispatchVoid, responseVoid}, 17     {RIL_REQUEST_CONFERENCE, dispatchVoid, responseVoid}, 18     {RIL_REQUEST_UDUB, dispatchVoid, responseVoid}, 19     {RIL_REQUEST_LAST_CALL_FAIL_CAUSE, dispatchVoid, responseInts}, 20     {RIL_REQUEST_SIGNAL_STRENGTH, dispatchVoid, responseRilSignalStrength}, 21     {RIL_REQUEST_VOICE_REGISTRATION_STATE, dispatchVoid, responseStrings}, 22     {RIL_REQUEST_DATA_REGISTRATION_STATE, dispatchVoid, responseStrings}, 23     {RIL_REQUEST_OPERATOR, dispatchVoid, responseStrings}, 24     {RIL_REQUEST_RADIO_POWER, dispatchInts, responseVoid}, 25     {RIL_REQUEST_DTMF, dispatchString, responseVoid}, 26     {RIL_REQUEST_SEND_SMS, dispatchStrings, responseSMS}, 27     {RIL_REQUEST_SEND_SMS_EXPECT_MORE, dispatchStrings, responseSMS}, 28     {RIL_REQUEST_SETUP_DATA_CALL, dispatchDataCall, responseSetupDataCall}, 29     {RIL_REQUEST_SIM_IO, dispatchSIM_IO, responseSIM_IO}, 30     {RIL_REQUEST_SEND_USSD, dispatchString, responseVoid}, 31     {RIL_REQUEST_CANCEL_USSD, dispatchVoid, responseVoid}, 32     {RIL_REQUEST_GET_CLIR, dispatchVoid, responseInts}, 33     {RIL_REQUEST_SET_CLIR, dispatchInts, responseVoid}, 34     {RIL_REQUEST_QUERY_CALL_FORWARD_STATUS, dispatchCallForward, responseCallForwards}, 35     {RIL_REQUEST_SET_CALL_FORWARD, dispatchCallForward, responseVoid}, 36     {RIL_REQUEST_QUERY_CALL_WAITING, dispatchInts, responseInts}, 37     {RIL_REQUEST_SET_CALL_WAITING, dispatchInts, responseVoid}, 38     {RIL_REQUEST_SMS_ACKNOWLEDGE, dispatchInts, responseVoid}, 39     {RIL_REQUEST_GET_IMEI, dispatchVoid, responseString}, 40     {RIL_REQUEST_GET_IMEISV, dispatchVoid, responseString}, 41     {RIL_REQUEST_ANSWER,dispatchVoid, responseVoid}, 42     {RIL_REQUEST_DEACTIVATE_DATA_CALL, dispatchStrings, responseVoid}, 43     {RIL_REQUEST_QUERY_FACILITY_LOCK, dispatchStrings, responseInts}, 44     {RIL_REQUEST_SET_FACILITY_LOCK, dispatchStrings, responseInts}, 45     {RIL_REQUEST_CHANGE_BARRING_PASSWORD, dispatchStrings, responseVoid}, 46     {RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE, dispatchVoid, responseInts}, 47     {RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, dispatchVoid, responseVoid}, 48     {RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL, dispatchString, responseVoid}, 49     {RIL_REQUEST_QUERY_AVAILABLE_NETWORKS , dispatchVoid, responseStrings}, 50     {RIL_REQUEST_DTMF_START, dispatchString, responseVoid}, 51     {RIL_REQUEST_DTMF_STOP, dispatchVoid, responseVoid}, 52     {RIL_REQUEST_BASEBAND_VERSION, dispatchVoid, responseString}, 53     {RIL_REQUEST_SEPARATE_CONNECTION, dispatchInts, responseVoid}, 54     {RIL_REQUEST_SET_MUTE, dispatchInts, responseVoid}, 55     {RIL_REQUEST_GET_MUTE, dispatchVoid, responseInts}, 56     {RIL_REQUEST_QUERY_CLIP, dispatchVoid, responseInts}, 57     {RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE, dispatchVoid, responseInts}, 58     {RIL_REQUEST_DATA_CALL_LIST, dispatchVoid, responseDataCallList}, 59     {RIL_REQUEST_RESET_RADIO, dispatchVoid, responseVoid}, 60     {RIL_REQUEST_OEM_HOOK_RAW, dispatchRaw, responseRaw}, 61     {RIL_REQUEST_OEM_HOOK_STRINGS, dispatchStrings, responseStrings}, 62     {RIL_REQUEST_SCREEN_STATE, dispatchInts, responseVoid}, 63     {RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION, dispatchInts, responseVoid}, 64     {RIL_REQUEST_WRITE_SMS_TO_SIM, dispatchSmsWrite, responseInts}, 65     {RIL_REQUEST_DELETE_SMS_ON_SIM, dispatchInts, responseVoid}, 66     {RIL_REQUEST_SET_BAND_MODE, dispatchInts, responseVoid}, 67     {RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE, dispatchVoid, responseInts}, 68     {RIL_REQUEST_STK_GET_PROFILE, dispatchVoid, responseString}, 69     {RIL_REQUEST_STK_SET_PROFILE, dispatchString, responseVoid}, 70     {RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND, dispatchString, responseString}, 71     {RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE, dispatchString, responseVoid}, 72     {RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM, dispatchInts, responseVoid}, 73     {RIL_REQUEST_EXPLICIT_CALL_TRANSFER, dispatchVoid, responseVoid}, 74     {RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE, dispatchInts, responseVoid}, 75     {RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE, dispatchVoid, responseInts}, 76     {RIL_REQUEST_GET_NEIGHBORING_CELL_IDS, dispatchVoid, responseCellList}, 77     {RIL_REQUEST_SET_LOCATION_UPDATES, dispatchInts, responseVoid}, 78     {RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE, dispatchInts, responseVoid}, 79     {RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE, dispatchInts, responseVoid}, 80     {RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE, dispatchVoid, responseInts}, 81     {RIL_REQUEST_SET_TTY_MODE, dispatchInts, responseVoid}, 82     {RIL_REQUEST_QUERY_TTY_MODE, dispatchVoid, responseInts}, 83     {RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE, dispatchInts, responseVoid}, 84     {RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE, dispatchVoid, responseInts}, 85     {RIL_REQUEST_CDMA_FLASH, dispatchString, responseVoid}, 86     {RIL_REQUEST_CDMA_BURST_DTMF, dispatchStrings, responseVoid}, 87     {RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY, dispatchString, responseVoid}, 88     {RIL_REQUEST_CDMA_SEND_SMS, dispatchCdmaSms, responseSMS}, 89     {RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE, dispatchCdmaSmsAck, responseVoid}, 90     {RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseGsmBrSmsCnf}, 91     {RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG, dispatchGsmBrSmsCnf, responseVoid}, 92     {RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid}, 93     {RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseCdmaBrSmsCnf}, 94     {RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG, dispatchCdmaBrSmsCnf, responseVoid}, 95     {RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid}, 96     {RIL_REQUEST_CDMA_SUBSCRIPTION, dispatchVoid, responseStrings}, 97     {RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM, dispatchRilCdmaSmsWriteArgs, responseInts}, 98     {RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM, dispatchInts, responseVoid}, 99     {RIL_REQUEST_DEVICE_IDENTITY, dispatchVoid, responseStrings},100     {RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE, dispatchVoid, responseVoid},101     {RIL_REQUEST_GET_SMSC_ADDRESS, dispatchVoid, responseString},102     {RIL_REQUEST_SET_SMSC_ADDRESS, dispatchString, responseVoid},103     {RIL_REQUEST_REPORT_SMS_MEMORY_STATUS, dispatchInts, responseVoid},104     {RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING, dispatchVoid, responseVoid},105     {RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE, dispatchVoid, responseInts},106     {RIL_REQUEST_ISIM_AUTHENTICATION, dispatchString, responseString}
View Code

 

RIL中有两种Response类型:

    一是Solicited Response(经过请求的回复),应用的场景是AP主动向BP发送一个AT指令,请求BP进行相应处理并在处理结束时回复一个AT指令通知AP执行的结果。源码中对应的文件是ril_commands.h。

    一是Unsolicited Response(未经请求的回复),应用场景是BP主动向AP发送AT指令,用于通知AP当前系统发生的与Telephony相关的事件,例如网络信号变化,有电话呼入等。源码中对应的文件是ril_unsol_commands.h。

 

static UnsolResponseInfo s_unsolResponses[] = {#include "ril_unsol_commands.h"};typedef struct {    int         requestNumber;    int         (*responseFunction) (Parcel &p, void *response, size_t responselen);    WakeType    wakeType;} UnsolResponseInfo;

 

面对这上百的s_command元素们,顿觉代码的流程并非难点,难在对每一个s_command的理解。

Ref:hardware\ril\include\telephony\Ril.h

 1     {RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED, responseVoid, WAKE_PARTIAL}, 2     {RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, responseVoid, WAKE_PARTIAL}, 3     {RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, responseVoid, WAKE_PARTIAL}, 4     {RIL_UNSOL_RESPONSE_NEW_SMS, responseString, WAKE_PARTIAL}, 5     {RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT, responseString, WAKE_PARTIAL}, 6     {RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM, responseInts, WAKE_PARTIAL}, 7     {RIL_UNSOL_ON_USSD, responseStrings, WAKE_PARTIAL}, 8     {RIL_UNSOL_ON_USSD_REQUEST, responseVoid, DONT_WAKE}, 9     {RIL_UNSOL_NITZ_TIME_RECEIVED, responseString, WAKE_PARTIAL},10     {RIL_UNSOL_SIGNAL_STRENGTH, responseRilSignalStrength, DONT_WAKE},11     {RIL_UNSOL_DATA_CALL_LIST_CHANGED, responseDataCallList, WAKE_PARTIAL},12     {RIL_UNSOL_SUPP_SVC_NOTIFICATION, responseSsn, WAKE_PARTIAL},13     {RIL_UNSOL_STK_SESSION_END, responseVoid, WAKE_PARTIAL},14     {RIL_UNSOL_STK_PROACTIVE_COMMAND, responseString, WAKE_PARTIAL},15     {RIL_UNSOL_STK_EVENT_NOTIFY, responseString, WAKE_PARTIAL},16     {RIL_UNSOL_STK_CALL_SETUP, responseInts, WAKE_PARTIAL},17     {RIL_UNSOL_SIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},18     {RIL_UNSOL_SIM_REFRESH, responseInts, WAKE_PARTIAL},19     {RIL_UNSOL_CALL_RING, responseCallRing, WAKE_PARTIAL},20     {RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, responseVoid, WAKE_PARTIAL},21     {RIL_UNSOL_RESPONSE_CDMA_NEW_SMS, responseCdmaSms, WAKE_PARTIAL},22     {RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS, responseRaw, WAKE_PARTIAL},23     {RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},24     {RIL_UNSOL_RESTRICTED_STATE_CHANGED, responseInts, WAKE_PARTIAL},25     {RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},26     {RIL_UNSOL_CDMA_CALL_WAITING, responseCdmaCallWaiting, WAKE_PARTIAL},27     {RIL_UNSOL_CDMA_OTA_PROVISION_STATUS, responseInts, WAKE_PARTIAL},28     {RIL_UNSOL_CDMA_INFO_REC, responseCdmaInformationRecords, WAKE_PARTIAL},29     {RIL_UNSOL_OEM_HOOK_RAW, responseRaw, WAKE_PARTIAL},30     {RIL_UNSOL_RINGBACK_TONE, responseInts, WAKE_PARTIAL},31     {RIL_UNSOL_RESEND_INCALL_MUTE, responseVoid, WAKE_PARTIAL},32     {RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, responseInts, WAKE_PARTIAL},33     {RIL_UNSOL_CDMA_PRL_CHANGED, responseInts, WAKE_PARTIAL},34     {RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},35     {RIL_UNSOL_RIL_CONNECTED, responseInts, WAKE_PARTIAL}
View Code

 

 打电话,则调用的是:

{RIL_REQUEST_DIAL, dispatchDial, responseVoid},

看来dispatchDial才是办实事的好同志,而dispatchDial中最终调用了s_callbacks,即之前通过 RIL_register(funcs),LibRIL 获得 Reference-RIL 的Interface 。

s_callbacks.onRequest(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI);

至此,终于进入了Reference-RIL。

 

中场休息,做个简单的回顾:

1. 我们构造了RequestInfo,pCI指向了对应的s_commands

typedef struct RequestInfo {    int32_t token;      //this is not RIL_Token    CommandInfo *pCI;    struct RequestInfo *p_next;    char cancelled;    char local;         // responses to local commands do not go back to command process} RequestInfo;

2. CommandInfo中的dispatchFunction最终调用了Reference-RIL提供的接口。

typedef struct {    int requestNumber;    void (*dispatchFunction) (Parcel &p, struct RequestInfo *pRI);    int(*responseFunction) (Parcel &p, void *response, size_t responselen);} CommandInfo;

3. RIL_RadioFunctions 便是RIL对Reference-RIL的实现要求。

typedef struct {    int version;        /* set to RIL_VERSION */    RIL_RequestFunc onRequest;    RIL_RadioStateRequest onStateRequest;    RIL_Supports supports;    RIL_Cancel onCancel;    RIL_GetVersion getVersion;} RIL_RadioFunctions;

4. onRequest 根据request号做出对应的处理,也就是ril_commands.h。

/** * RIL_Request Function pointer * * @param request is one of RIL_REQUEST_* * @param data is pointer to data defined for that RIL_REQUEST_* *        data is owned by caller, and should not be modified or freed by callee * @param t should be used in subsequent call to RIL_onResponse * @param datalen the length of data * */typedef void (*RIL_RequestFunc) (int request, void *data,                                    size_t datalen, RIL_Token t);

RIL_RadioFunctions需要实现ril_commands.h中定义的request,当然,不一定全部支持。

 

OK,继续 dialing...

case RIL_REQUEST_DIAL:       requestDial(data, datalen, t);

终于要见到AT的影子:

static void requestDial(void *data, size_t datalen, RIL_Token t){    RIL_Dial *p_dial;    char *cmd;    const char *clir;    int ret;    p_dial = (RIL_Dial *)data;    switch (p_dial->clir) {        case 1: clir = "I"; break;  /*invocation*/        case 2: clir = "i"; break;  /*suppression*/        default:        case 0: clir = ""; break;   /*subscription default*/    }    asprintf(&cmd, "ATD%s%s;", p_dial->address, clir);    ret = at_send_command(cmd, NULL);    free(cmd);    /* success or failure is ignored by the upper layer here.       it will call GET_CURRENT_CALLS and determine success that way */    RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);}

 

之后的事情便是将AT string通过某种通道发送给BP。至于这个通道的建立,可能是串口也可能是其他,但最终都会表现为一个文件描述符,这就是 rilInit 的事儿了。

以上便是基于Dial的流程浏览,到这一层,重点还是对ril_commands.h, ril_unsol_commands.h的理解,"得此二物者得RIL"!

NEXT, LET'S GO INTO BP.

 


<script type="text/javascript"><!--google_ad_client = "ca-pub-1944176156128447";/* cnblogs 首页横幅 */google_ad_slot = "5419468456";google_ad_width = 728;google_ad_height = 90;//--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"></script>
原创粉丝点击