自动阈值分割-场景中直线个数的检测

来源:互联网 发布:python 字符串 数字 编辑:程序博客网 时间:2024/06/05 08:29

问题:

在竞速机器人的比赛中,我们使用计算机视觉导航进行跑道路线的识别

目标:

在不同的情况下可以得到采集到的图片中直线的个数,以及直线的斜率,进而判断机器人的具体位置

不同的环境,包括:晴天,阴天,室内,室外,阴影区,和非阴影区,摄像头的曝光区,和非曝光区

具体图片:

该图像包含阴影区和反光区

先进行RGB到灰度图的转换

clear all;close all;clcimg = imread('1.jpg');img = imresize(img,[240,320]);%%%先进行颜色空间的转换[row col dim] = size(img);T = zeros([row ,col]);A = [0.299 0.587 0.114];for i=1:row    for j=1:col        B = [img(i,j,1) img(i,j,2) img(i,j,3)]';        T(i,j) = A*double(B);    endendnew_img = uint8(T);figure ;imshow(new_img);title('自己转换的图片');

紧接着进行阈值分割点的查找

%%%进行阈值分割Grade_Level = zeros(1,256);for x = 1:row    for y = 1:col        Grade_Level(new_img(x,y)+1) = Grade_Level(new_img(x,y)+1) + 1;    endendfigure;plot(1:256,Grade_Level);title('灰度直方图');%%%寻找分割点num_bins=256;counts = Grade_Level(:);p = counts / sum(counts);omega = cumsum(p);mu = cumsum(p .* (1:num_bins)');mu_t = mu(end);sigma_b_squared = (mu_t * omega - mu).^2 ./ (omega .* (1 - omega));% Find the location of the maximum value of sigma_b_squared.% The maximum may extend over several bins, so average together the% locations.  If maxval is NaN, meaning that sigma_b_squared is all NaN,% then return 0.maxval = max(sigma_b_squared);isfinite_maxval = isfinite(maxval);if isfinite_maxval    idx = mean(find(sigma_b_squared == maxval));    pos_threshold = (idx - 1) / (num_bins - 1);else    pos_threshold = 0.0;endpos_threshold = pos_threshold*(num_bins-1);%%pos_index = 1;for i=1:row    for j=1:col        if new_img(i,j) > pos_threshold            new_img(i,j) = 255;        else            new_img(i,j) = 0;            Img_posX(pos_index) = i;            Img_posY(pos_index) = j;            pos_index = pos_index + 1;        end    endendfigure ; imshow(new_img);



然后检测图片中的直线的条数

%%%进行直线的分割%利用扫描线算法确定直线的条数%主要思路:找到一个点,然后直接在周围寻找点%该点的四邻域内的点如果都是黑色的就把该点放进去Point.x = -1;Point.y = -1;first_line(1) = Point;iterator = 0;max_Target_line = 0;line_Cell = cell(3,1);for i=2:row-1    curRow = i;%表明现在做的任何处理都是针对当前行的处理    num_line = 0;%一行扫描下来得到的目标线的个数    isChanged = 0;%表示没有改变    temp_flag = -1;    for j=2:col-1                num = new_img(i,j);                if num == 255 && (num == new_img(i,j-1)...                && num == new_img(i,j+1)...                && num == new_img(i-1,j)...                && num == new_img(i+1,j))                        if isChanged == 1                temp_flag = temp_flag * -1;                isChanged = 0;                num_line = num_line + 1;                %发现了一条直线,然后记录下直线的位置,作为该直线的大体位置                            end        end                %当前的点为目标点,且直线的四邻域的值也都为目标点        if num == 0 && (num == new_img(i,j-1)...                && num == new_img(i,j+1)...                && num == new_img(i-1,j)...                && num == new_img(i+1,j))                        if isChanged == 0                isChanged = 1;            end                        iterator = iterator + 1;            Point.x = i;            Point.y = j;            first_line(iterator) = Point;        end            end        if num_line > max_Target_line        max_Target_line = num_line;    end    endmax_Target_line

剩下的就是最下二乘法的拟合程序:

%%%对直线点集进行最小二乘法拟合,求出直线的斜率sum_x = 0;sum_y = 0;sum_mul = 0;sum_squar = 0;first_line = line_Cell{1};N = length(first_line);for i=1:N    sum_x = sum_x + first_line(i).x;    sum_y = sum_y + first_line(i).y;    sum_mul = sum_mul + first_line(i).x*first_line(i).y;    sum_squar = sum_squar + (first_line(i).x)^2;endmean_x = sum_x*1.0/n;mean_y = sum_y*1.0/n;sum_Xdelta = 0;sum_Ydelta = 0;for i=1:N    sum_Xdelta = sum_Xdelta + (first_line(i).x-mean_x)^2;    sum_Ydelta = sum_Ydelta + (first_line(i).y-mean_y)^2;enddelta_x = (sum_Xdelta*1.0/n)^0.5;delta_y = (sum_Ydelta*1.0/n)^0.5;temp_sum = 0;for i=1:N    temp_sum = temp_sum + (first_line(i).x-mean_x)*(first_line(i).y-mean_y)/(delta_x*delta_y);enddisp('直线的相关系数');relative_line = temp_sum/ndisp('直线的斜率');betha = (n*sum_mul-sum_x*sum_y)*1.0/(n*sum_squar-sum_x^2)

如果要检测图片中的真正直线的个数,可以采用huogh直线检测的算法来检测

%%%Hough变换检测直线,使用(a,p)参数空间,a∈[0,180],p∈[0,2d]a=180; %角度的值为0到180度d=round(sqrt(m^2+n^2)); %图像对角线长度为p的最大值s=zeros(a,2*d); %存储每个(a,p)个数z=cell(a,2*d);  %用元胞存储每个被检测的点的坐标for i=1:m    for j=1:n %遍历图像每个点        if(q(i,j)==1) %只检测图像边缘的白点,其余点不检测            for k=1:a                p = round(i*cos(pi*k/180)+j*sin(pi*k/180)); %对每个点从1到180度遍历一遍,取得经过该点的所有直线的p值(取整)                if(p > 0)%若p大于0,则将点存储在(d,2d)空间                    s(k,d+p)=s(k,d+p)+1; %(a,p)相应的累加器单元加一                    z{k,d+p}=[z{k,d+p},[i,j]'];%存储点坐标                else%相当于a为0到-180                    ap=abs(p)+1;%若p小于0,则将点存储在(0,d)空间                    s(k,ap)=s(k,ap)+1;%(a,p)相应的累加器单元加一                    z{k,ap}=[z{k,ap},[i,j]'];%存储点坐标                end            end        end    endendangle_num=1;for i=1:a    for j=1:d*2 %检查每个累加器单元中存储数量        if(s(i,j) >55) %将提取直线的阈值设为70            angle(angle_num)=i;            angle_num=angle_num+1;            lp=z{i,j};%提取对应点坐标            for k=1:s(i,j)%对满足阈值条件的累加器单元中(a,p)对应的所有点进行操作                o(lp(1,k),lp(2,k),1)=255; %每个点R分量=255,G分量=0,B分量=0                o(lp(1,k),lp(2,k),2)=0;                o(lp(1,k),lp(2,k),3)=0;  %结果为在原图上对满足阈值要求的直线上的点赋红色            end        end    endendfigure,imshow(o);title('hough变换提取直线');





原创粉丝点击