haar.cpp sourcearchive

来源:互联网 发布:网络炭化植物 编辑:程序博客网 时间:2024/06/17 12:45

转自:http://opencv.sourcearchive.com/documentation/2.3.1-0exp1/haar_8cpp_source.html

haar.cpp

/*M///////////////////////////////////////////////////////////////////////////////////////////  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.////  By downloading, copying, installing or using the software you agree to this license.//  If you do not agree to this license, do not download, install,//  copy or use the software.//////                        Intel License Agreement//                For Open Source Computer Vision Library//// Copyright (C) 2000, Intel Corporation, all rights reserved.// Third party copyrights are property of their respective owners.//// Redistribution and use in source and binary forms, with or without modification,// are permitted provided that the following conditions are met:////   * Redistribution's of source code must retain the above copyright notice,//     this list of conditions and the following disclaimer.////   * Redistribution's in binary form must reproduce the above copyright notice,//     this list of conditions and the following disclaimer in the documentation//     and/or other materials provided with the distribution.////   * The name of Intel Corporation may not be used to endorse or promote products//     derived from this software without specific prior written permission.//// This software is provided by the copyright holders and contributors "as is" and// any express or implied warranties, including, but not limited to, the implied// warranties of merchantability and fitness for a particular purpose are disclaimed.// In no event shall the Intel Corporation or contributors be liable for any direct,// indirect, incidental, special, exemplary, or consequential damages// (including, but not limited to, procurement of substitute goods or services;// loss of use, data, or profits; or business interruption) however caused// and on any theory of liability, whether in contract, strict liability,// or tort (including negligence or otherwise) arising in any way out of// the use of this software, even if advised of the possibility of such damage.////M*//* Haar features calculation */#include "precomp.hpp"#include <stdio.h>/*#if CV_SSE2#   if CV_SSE4 || defined __SSE4__#       include <smmintrin.h>#   else#       define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))#       define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))#   endif#if defined CV_ICC#   define CV_HAAR_USE_SSE 1#endif#endif*//* these settings affect the quality of detection: change with care */#define CV_ADJUST_FEATURES 1#define CV_ADJUST_WEIGHTS  0typedef int sumtype;typedef double sqsumtype;00066 typedef struct CvHidHaarFeature{    struct    {        sumtype *p0, *p1, *p2, *p3;        float weight;    }    rect[CV_HAAR_FEATURE_MAX];}CvHidHaarFeature;00078 typedef struct CvHidHaarTreeNode{    CvHidHaarFeature feature;    float threshold;    int left;    int right;}CvHidHaarTreeNode;00088 typedef struct CvHidHaarClassifier{    int count;    //CvHaarFeature* orig_feature;    CvHidHaarTreeNode* node;    float* alpha;}CvHidHaarClassifier;00098 typedef struct CvHidHaarStageClassifier{    int  count;    float threshold;    CvHidHaarClassifier* classifier;    int two_rects;    struct CvHidHaarStageClassifier* next;    struct CvHidHaarStageClassifier* child;    struct CvHidHaarStageClassifier* parent;}CvHidHaarStageClassifier;00112 struct CvHidHaarClassifierCascade{    int  count;    int  isStumpBased;    int  has_tilted_features;    int  is_tree;    double inv_window_area;    CvMat sum, sqsum, tilted;    CvHidHaarStageClassifier* stage_classifier;    sqsumtype *pq0, *pq1, *pq2, *pq3;    sumtype *p0, *p1, *p2, *p3;    void** ipp_stages;};const int icv_object_win_border = 1;const float icv_stage_threshold_bias = 0.0001f;static CvHaarClassifierCascade*icvCreateHaarClassifierCascade( int stage_count ){    CvHaarClassifierCascade* cascade = 0;    int block_size = sizeof(*cascade) + stage_count*sizeof(*cascade->stage_classifier);    if( stage_count <= 0 )        CV_Error( CV_StsOutOfRange, "Number of stages should be positive" );    cascade = (CvHaarClassifierCascade*)cvAlloc( block_size );    memset( cascade, 0, block_size );    cascade->stage_classifier = (CvHaarStageClassifier*)(cascade + 1);    cascade->flags = CV_HAAR_MAGIC_VAL;    cascade->count = stage_count;    return cascade;}static voidicvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade ){    if( _cascade && *_cascade )    {#ifdef HAVE_IPP        CvHidHaarClassifierCascade* cascade = *_cascade;        if( cascade->ipp_stages )        {            int i;            for( i = 0; i < cascade->count; i++ )            {                if( cascade->ipp_stages[i] )                    ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)cascade->ipp_stages[i] );            }        }        cvFree( &cascade->ipp_stages );#endif        cvFree( _cascade );    }}/* create more efficient internal representation of haar classifier cascade */static CvHidHaarClassifierCascade*icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade ){    CvRect* ipp_features = 0;    float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;    int* ipp_counts = 0;    CvHidHaarClassifierCascade* out = 0;    int i, j, k, l;    int datasize;    int total_classifiers = 0;    int total_nodes = 0;    char errorstr[100];    CvHidHaarClassifier* haar_classifier_ptr;    CvHidHaarTreeNode* haar_node_ptr;    CvSize orig_window_size;    int has_tilted_features = 0;    int max_count = 0;    if( !CV_IS_HAAR_CLASSIFIER(cascade) )        CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );    if( cascade->hid_cascade )        CV_Error( CV_StsError, "hid_cascade has been already created" );    if( !cascade->stage_classifier )        CV_Error( CV_StsNullPtr, "" );    if( cascade->count <= 0 )        CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" );    orig_window_size = cascade->orig_window_size;    /* check input structure correctness and calculate total memory size needed for       internal representation of the classifier cascade */    for( i = 0; i < cascade->count; i++ )    {        CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;        if( !stage_classifier->classifier ||            stage_classifier->count <= 0 )        {            sprintf( errorstr, "header of the stage classifier #%d is invalid "                     "(has null pointers or non-positive classfier count)", i );            CV_Error( CV_StsError, errorstr );        }        max_count = MAX( max_count, stage_classifier->count );        total_classifiers += stage_classifier->count;        for( j = 0; j < stage_classifier->count; j++ )        {            CvHaarClassifier* classifier = stage_classifier->classifier + j;            total_nodes += classifier->count;            for( l = 0; l < classifier->count; l++ )            {                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )                {                    if( classifier->haar_feature[l].rect[k].r.width )                    {                        CvRect r = classifier->haar_feature[l].rect[k].r;                        int tilted = classifier->haar_feature[l].tilted;                        has_tilted_features |= tilted != 0;                        if( r.width < 0 || r.height < 0 || r.y < 0 ||                            r.x + r.width > orig_window_size.width                            ||                            (!tilted &&                            (r.x < 0 || r.y + r.height > orig_window_size.height))                            ||                            (tilted && (r.x - r.height < 0 ||                            r.y + r.width + r.height > orig_window_size.height)))                        {                            sprintf( errorstr, "rectangle #%d of the classifier #%d of "                                     "the stage classifier #%d is not inside "                                     "the reference (original) cascade window", k, j, i );                            CV_Error( CV_StsNullPtr, errorstr );                        }                    }                }            }        }    }    // this is an upper boundary for the whole hidden cascade size    datasize = sizeof(CvHidHaarClassifierCascade) +               sizeof(CvHidHaarStageClassifier)*cascade->count +               sizeof(CvHidHaarClassifier) * total_classifiers +               sizeof(CvHidHaarTreeNode) * total_nodes +               sizeof(void*)*(total_nodes + total_classifiers);    out = (CvHidHaarClassifierCascade*)cvAlloc( datasize );    memset( out, 0, sizeof(*out) );    /* init header */    out->count = cascade->count;    out->stage_classifier = (CvHidHaarStageClassifier*)(out + 1);    haar_classifier_ptr = (CvHidHaarClassifier*)(out->stage_classifier + cascade->count);    haar_node_ptr = (CvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);    out->isStumpBased = 1;    out->has_tilted_features = has_tilted_features;    out->is_tree = 0;    /* initialize internal representation */    for( i = 0; i < cascade->count; i++ )    {        CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;        CvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;        hid_stage_classifier->count = stage_classifier->count;        hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;        hid_stage_classifier->classifier = haar_classifier_ptr;        hid_stage_classifier->two_rects = 1;        haar_classifier_ptr += stage_classifier->count;        hid_stage_classifier->parent = (stage_classifier->parent == -1)            ? NULL : out->stage_classifier + stage_classifier->parent;        hid_stage_classifier->next = (stage_classifier->next == -1)            ? NULL : out->stage_classifier + stage_classifier->next;        hid_stage_classifier->child = (stage_classifier->child == -1)            ? NULL : out->stage_classifier + stage_classifier->child;        out->is_tree |= hid_stage_classifier->next != NULL;        for( j = 0; j < stage_classifier->count; j++ )        {            CvHaarClassifier* classifier = stage_classifier->classifier + j;            CvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;            int node_count = classifier->count;            float* alpha_ptr = (float*)(haar_node_ptr + node_count);            hid_classifier->count = node_count;            hid_classifier->node = haar_node_ptr;            hid_classifier->alpha = alpha_ptr;            for( l = 0; l < node_count; l++ )            {                CvHidHaarTreeNode* node = hid_classifier->node + l;                CvHaarFeature* feature = classifier->haar_feature + l;                memset( node, -1, sizeof(*node) );                node->threshold = classifier->threshold[l];                node->left = classifier->left[l];                node->right = classifier->right[l];                if( fabs(feature->rect[2].weight) < DBL_EPSILON ||                    feature->rect[2].r.width == 0 ||                    feature->rect[2].r.height == 0 )                    memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );                else                    hid_stage_classifier->two_rects = 0;            }            memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));            haar_node_ptr =                (CvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));            out->isStumpBased &= node_count == 1;        }    }#ifdef HAVE_IPP    int can_use_ipp = !out->has_tilted_features && !out->is_tree && out->isStumpBased;    if( can_use_ipp )    {        int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);        float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*            (orig_window_size.height-icv_object_win_border*2)));        out->ipp_stages = (void**)cvAlloc( ipp_datasize );        memset( out->ipp_stages, 0, ipp_datasize );        ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) );        ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) );        ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) );        ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) );        ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) );        ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) );        for( i = 0; i < cascade->count; i++ )        {            CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;            for( j = 0, k = 0; j < stage_classifier->count; j++ )            {                CvHaarClassifier* classifier = stage_classifier->classifier + j;                int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);                ipp_thresholds[j] = classifier->threshold[0];                ipp_val1[j] = classifier->alpha[0];                ipp_val2[j] = classifier->alpha[1];                ipp_counts[j] = rect_count;                for( l = 0; l < rect_count; l++, k++ )                {                    ipp_features[k] = classifier->haar_feature->rect[l].r;                    //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;                    ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;                }            }            if( ippiHaarClassifierInitAlloc_32f( (IppiHaarClassifier_32f**)&out->ipp_stages[i],                (const IppiRect*)ipp_features, ipp_weights, ipp_thresholds,                ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )                break;        }        if( i < cascade->count )        {            for( j = 0; j < i; j++ )                if( out->ipp_stages[i] )                    ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)out->ipp_stages[i] );            cvFree( &out->ipp_stages );        }    }#endif    cascade->hid_cascade = out;    assert( (char*)haar_node_ptr - (char*)out <= datasize );    cvFree( &ipp_features );    cvFree( &ipp_weights );    cvFree( &ipp_thresholds );    cvFree( &ipp_val1 );    cvFree( &ipp_val2 );    cvFree( &ipp_counts );    return out;}#define sum_elem_ptr(sum,row,col)  \    ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))#define sqsum_elem_ptr(sqsum,row,col)  \    ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))#define calc_sum(rect,offset) \    ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])CV_IMPL voidcvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,                                     const CvArr* _sum,                                     const CvArr* _sqsum,                                     const CvArr* _tilted_sum,                                     double scale ){    CvMat sum_stub, *sum = (CvMat*)_sum;    CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;    CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;    CvHidHaarClassifierCascade* cascade;    int coi0 = 0, coi1 = 0;    int i;    CvRect equRect;    double weight_scale;    if( !CV_IS_HAAR_CLASSIFIER(_cascade) )        CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );    if( scale <= 0 )        CV_Error( CV_StsOutOfRange, "Scale must be positive" );    sum = cvGetMat( sum, &sum_stub, &coi0 );    sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );    if( coi0 || coi1 )        CV_Error( CV_BadCOI, "COI is not supported" );    if( !CV_ARE_SIZES_EQ( sum, sqsum ))        CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );    if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||        CV_MAT_TYPE(sum->type) != CV_32SC1 )        CV_Error( CV_StsUnsupportedFormat,        "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );    if( !_cascade->hid_cascade )        icvCreateHidHaarClassifierCascade(_cascade);    cascade = _cascade->hid_cascade;    if( cascade->has_tilted_features )    {        tilted = cvGetMat( tilted, &tilted_stub, &coi1 );        if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )            CV_Error( CV_StsUnsupportedFormat,            "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );        if( sum->step != tilted->step )            CV_Error( CV_StsUnmatchedSizes,            "Sum and tilted_sum must have the same stride (step, widthStep)" );        if( !CV_ARE_SIZES_EQ( sum, tilted ))            CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );        cascade->tilted = *tilted;    }    _cascade->scale = scale;    _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );    _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );    cascade->sum = *sum;    cascade->sqsum = *sqsum;    equRect.x = equRect.y = cvRound(scale);    equRect.width = cvRound((_cascade->orig_window_size.width-2)*scale);    equRect.height = cvRound((_cascade->orig_window_size.height-2)*scale);    weight_scale = 1./(equRect.width*equRect.height);    cascade->inv_window_area = weight_scale;    cascade->p0 = sum_elem_ptr(*sum, equRect.y, equRect.x);    cascade->p1 = sum_elem_ptr(*sum, equRect.y, equRect.x + equRect.width );    cascade->p2 = sum_elem_ptr(*sum, equRect.y + equRect.height, equRect.x );    cascade->p3 = sum_elem_ptr(*sum, equRect.y + equRect.height,                                     equRect.x + equRect.width );    cascade->pq0 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x);    cascade->pq1 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x + equRect.width );    cascade->pq2 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, equRect.x );    cascade->pq3 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height,                                          equRect.x + equRect.width );    /* init pointers in haar features according to real window size and       given image pointers */    for( i = 0; i < _cascade->count; i++ )    {        int j, k, l;        for( j = 0; j < cascade->stage_classifier[i].count; j++ )        {            for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )            {                CvHaarFeature* feature =                    &_cascade->stage_classifier[i].classifier[j].haar_feature[l];                /* CvHidHaarClassifier* classifier =                    cascade->stage_classifier[i].classifier + j; */                CvHidHaarFeature* hidfeature =                    &cascade->stage_classifier[i].classifier[j].node[l].feature;                double sum0 = 0, area0 = 0;                CvRect r[3];                int base_w = -1, base_h = -1;                int new_base_w = 0, new_base_h = 0;                int kx, ky;                int flagx = 0, flagy = 0;                int x0 = 0, y0 = 0;                int nr;                /* align blocks */                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )                {                    if( !hidfeature->rect[k].p0 )                        break;                    r[k] = feature->rect[k].r;                    base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );                    base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );                    base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );                    base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );                }                nr = k;                base_w += 1;                base_h += 1;                kx = r[0].width / base_w;                ky = r[0].height / base_h;                if( kx <= 0 )                {                    flagx = 1;                    new_base_w = cvRound( r[0].width * scale ) / kx;                    x0 = cvRound( r[0].x * scale );                }                if( ky <= 0 )                {                    flagy = 1;                    new_base_h = cvRound( r[0].height * scale ) / ky;                    y0 = cvRound( r[0].y * scale );                }                for( k = 0; k < nr; k++ )                {                    CvRect tr;                    double correction_ratio;                    if( flagx )                    {                        tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;                        tr.width = r[k].width * new_base_w / base_w;                    }                    else                    {                        tr.x = cvRound( r[k].x * scale );                        tr.width = cvRound( r[k].width * scale );                    }                    if( flagy )                    {                        tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;                        tr.height = r[k].height * new_base_h / base_h;                    }                    else                    {                        tr.y = cvRound( r[k].y * scale );                        tr.height = cvRound( r[k].height * scale );                    }#if CV_ADJUST_WEIGHTS                    {                    // RAINER START                    const float orig_feature_size =  (float)(feature->rect[k].r.width)*feature->rect[k].r.height;                    const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);                    const float feature_size = float(tr.width*tr.height);                    //const float normSize    = float(equRect.width*equRect.height);                    float target_ratio = orig_feature_size / orig_norm_size;                    //float isRatio = featureSize / normSize;                    //correctionRatio = targetRatio / isRatio / normSize;                    correction_ratio = target_ratio / feature_size;                    // RAINER END                    }#else                    correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);#endif                    if( !feature->tilted )                    {                        hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x);                        hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width);                        hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x);                        hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width);                    }                    else                    {                        hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width);                        hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height,                                                              tr.x + tr.width - tr.height);                        hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x);                        hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height);                    }                    hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);                    if( k == 0 )                        area0 = tr.width * tr.height;                    else                        sum0 += hidfeature->rect[k].weight * tr.width * tr.height;                }                hidfeature->rect[0].weight = (float)(-sum0/area0);            } /* l */        } /* j */    }}CV_INLINEdouble icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier,                                 double variance_norm_factor,                                 size_t p_offset ){    int idx = 0;    do    {        CvHidHaarTreeNode* node = classifier->node + idx;        double t = node->threshold * variance_norm_factor;        double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;        sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;        if( node->feature.rect[2].p0 )            sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;        idx = sum < t ? node->left : node->right;    }    while( idx > 0 );    return classifier->alpha[-idx];}CV_IMPL intcvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,                               CvPoint pt, double& stage_sum, int start_stage ){    int result = -1;    int p_offset, pq_offset;    int i, j;    double mean, variance_norm_factor;    CvHidHaarClassifierCascade* cascade;    if( !CV_IS_HAAR_CLASSIFIER(_cascade) )        CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );    cascade = _cascade->hid_cascade;    if( !cascade )        CV_Error( CV_StsNullPtr, "Hidden cascade has not been created.\n"            "Use cvSetImagesForHaarClassifierCascade" );    if( pt.x < 0 || pt.y < 0 ||        pt.x + _cascade->real_window_size.width >= cascade->sum.width ||        pt.y + _cascade->real_window_size.height >= cascade->sum.height )        return -1;    p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;    pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;    mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area;    variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] -                           cascade->pq2[pq_offset] + cascade->pq3[pq_offset];    variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean;    if( variance_norm_factor >= 0. )        variance_norm_factor = sqrt(variance_norm_factor);    else        variance_norm_factor = 1.;    if( cascade->is_tree )    {        CvHidHaarStageClassifier* ptr;        assert( start_stage == 0 );        result = 1;        ptr = cascade->stage_classifier;        while( ptr )        {            stage_sum = 0.0;            for( j = 0; j < ptr->count; j++ )            {                stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j,                    variance_norm_factor, p_offset );            }            if( stage_sum >= ptr->threshold )            {                ptr = ptr->child;            }            else            {                while( ptr && ptr->next == NULL ) ptr = ptr->parent;                if( ptr == NULL )                    return 0;                ptr = ptr->next;            }        }    }    else if( cascade->isStumpBased )    {        for( i = start_stage; i < cascade->count; i++ )        {#ifndef CV_HAAR_USE_SSE            stage_sum = 0.0;#else            __m128d stage_sum = _mm_setzero_pd();#endif            if( cascade->stage_classifier[i].two_rects )            {                for( j = 0; j < cascade->stage_classifier[i].count; j++ )                {                    CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;                    CvHidHaarTreeNode* node = classifier->node;#ifndef CV_HAAR_USE_SSE                    double t = node->threshold*variance_norm_factor;                    double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;                    sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;                    stage_sum += classifier->alpha[sum >= t];#else                    // ayasin - NHM perf optim. Avoid use of costly flaky jcc                    __m128d t = _mm_set_sd(node->threshold*variance_norm_factor);                    __m128d a = _mm_set_sd(classifier->alpha[0]);                    __m128d b = _mm_set_sd(classifier->alpha[1]);                    __m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +                                             calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);                    t = _mm_cmpgt_sd(t, sum);                    stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));#endif                }            }            else            {                for( j = 0; j < cascade->stage_classifier[i].count; j++ )                {                    CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;                    CvHidHaarTreeNode* node = classifier->node;#ifndef CV_HAAR_USE_SSE                    double t = node->threshold*variance_norm_factor;                    double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;                    sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;                    if( node->feature.rect[2].p0 )                        sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;                                        stage_sum += classifier->alpha[sum >= t];#else                    // ayasin - NHM perf optim. Avoid use of costly flaky jcc                    __m128d t = _mm_set_sd(node->threshold*variance_norm_factor);                    __m128d a = _mm_set_sd(classifier->alpha[0]);                    __m128d b = _mm_set_sd(classifier->alpha[1]);                    double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;                    _sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;                    if( node->feature.rect[2].p0 )                        _sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;                    __m128d sum = _mm_set_sd(_sum);                                        t = _mm_cmpgt_sd(t, sum);                    stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));#endif                }            }#ifndef CV_HAAR_USE_SSE            if( stage_sum < cascade->stage_classifier[i].threshold )#else            __m128d i_threshold = _mm_set_sd(cascade->stage_classifier[i].threshold);            if( _mm_comilt_sd(stage_sum, i_threshold) )#endif                return -i;        }    }    else    {        for( i = start_stage; i < cascade->count; i++ )        {            stage_sum = 0.0;            for( j = 0; j < cascade->stage_classifier[i].count; j++ )            {                stage_sum += icvEvalHidHaarClassifier(                    cascade->stage_classifier[i].classifier + j,                    variance_norm_factor, p_offset );            }            if( stage_sum < cascade->stage_classifier[i].threshold )                return -i;        }    }    return 1;}CV_IMPL intcvRunHaarClassifierCascade( const CvHaarClassifierCascade* _cascade,                            CvPoint pt, int start_stage ){    double stage_sum;    return cvRunHaarClassifierCascadeSum(_cascade, pt, stage_sum, start_stage);}namespace cv{00826 struct HaarDetectObjects_ScaleImage_Invoker{    HaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade* _cascade,                                          int _stripSize, double _factor,                                          const Mat& _sum1, const Mat& _sqsum1, Mat* _norm1,                                          Mat* _mask1, Rect _equRect, ConcurrentRectVector& _vec,                                           std::vector<int>& _levels, std::vector<double>& _weights,                                          bool _outputLevels  )    {        cascade = _cascade;        stripSize = _stripSize;        factor = _factor;        sum1 = _sum1;        sqsum1 = _sqsum1;        norm1 = _norm1;        mask1 = _mask1;        equRect = _equRect;        vec = &_vec;        rejectLevels = _outputLevels ? &_levels : 0;        levelWeights = _outputLevels ? &_weights : 0;    }        void operator()( const BlockedRange& range ) const    {        Size winSize0 = cascade->orig_window_size;        Size winSize(cvRound(winSize0.width*factor), cvRound(winSize0.height*factor));        int y1 = range.begin()*stripSize, y2 = min(range.end()*stripSize, sum1.rows - 1 - winSize0.height);                if (y2 <= y1 || sum1.cols <= 1 + winSize0.width)            return;                Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1);        int x, y, ystep = factor > 2 ? 1 : 2;            #ifdef HAVE_IPP        if( cascade->hid_cascade->ipp_stages )        {            IppiRect iequRect = {equRect.x, equRect.y, equRect.width, equRect.height};            ippiRectStdDev_32f_C1R(sum1.ptr<float>(y1), sum1.step,                                   sqsum1.ptr<double>(y1), sqsum1.step,                                   norm1->ptr<float>(y1), norm1->step,                                   ippiSize(ssz.width, ssz.height), iequRect );                        int positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep);            if( ystep == 1 )                (*mask1) = Scalar::all(1);            else                for( y = y1; y < y2; y++ )                {                    uchar* mask1row = mask1->ptr(y);                    memset( mask1row, 0, ssz.width );                                        if( y % ystep == 0 )                        for( x = 0; x < ssz.width; x += ystep )                            mask1row[x] = (uchar)1;                }                        for( int j = 0; j < cascade->count; j++ )            {                if( ippiApplyHaarClassifier_32f_C1R(                            sum1.ptr<float>(y1), sum1.step,                            norm1->ptr<float>(y1), norm1->step,                            mask1->ptr<uchar>(y1), mask1->step,                            ippiSize(ssz.width, ssz.height), &positive,                            cascade->hid_cascade->stage_classifier[j].threshold,                            (IppiHaarClassifier_32f*)cascade->hid_cascade->ipp_stages[j]) < 0 )                    positive = 0;                if( positive <= 0 )                    break;            }                        if( positive > 0 )                for( y = y1; y < y2; y += ystep )                {                    uchar* mask1row = mask1->ptr(y);                    for( x = 0; x < ssz.width; x += ystep )                        if( mask1row[x] != 0 )                        {                            vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),                                                winSize.width, winSize.height));                            if( --positive == 0 )                                break;                        }                    if( positive == 0 )                        break;                }        }        else#endif            for( y = y1; y < y2; y += ystep )                for( x = 0; x < ssz.width; x += ystep )                {                    double gypWeight;                    int result = cvRunHaarClassifierCascadeSum( cascade, cvPoint(x,y), gypWeight, 0 );                    if( rejectLevels )                    {                        if( result == 1 )                            result = -1*cascade->count;                        if( cascade->count + result < 4 )                        {                            vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),                                           winSize.width, winSize.height));                            rejectLevels->push_back(-result);                            levelWeights->push_back(gypWeight);                        }                    }                    else                    {                        if( result > 0 )                            vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),                                           winSize.width, winSize.height));                     }                }    }        const CvHaarClassifierCascade* cascade;    int stripSize;    double factor;    Mat sum1, sqsum1, *norm1, *mask1;    Rect equRect;    ConcurrentRectVector* vec;    std::vector<int>* rejectLevels;    std::vector<double>* levelWeights;};    00953 struct HaarDetectObjects_ScaleCascade_Invoker{    HaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade* _cascade,                                            Size _winsize, const Range& _xrange, double _ystep,                                            size_t _sumstep, const int** _p, const int** _pq,                                            ConcurrentRectVector& _vec )    {        cascade = _cascade;        winsize = _winsize;        xrange = _xrange;        ystep = _ystep;        sumstep = _sumstep;        p = _p; pq = _pq;        vec = &_vec;    }        void operator()( const BlockedRange& range ) const    {        int iy, startY = range.begin(), endY = range.end();        const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3];        const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3];        bool doCannyPruning = p0 != 0;        int sstep = (int)(sumstep/sizeof(p0[0]));                for( iy = startY; iy < endY; iy++ )        {            int ix, y = cvRound(iy*ystep), ixstep = 1;            for( ix = xrange.start; ix < xrange.end; ix += ixstep )            {                int x = cvRound(ix*ystep); // it should really be ystep, not ixstep                                if( doCannyPruning )                {                    int offset = y*sstep + x;                    int s = p0[offset] - p1[offset] - p2[offset] + p3[offset];                    int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];                    if( s < 100 || sq < 20 )                    {                        ixstep = 2;                        continue;                    }                }                                int result = cvRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 );                if( result > 0 )                    vec->push_back(Rect(x, y, winsize.width, winsize.height));                ixstep = result != 0 ? 1 : 2;            }        }    }        const CvHaarClassifierCascade* cascade;    double ystep;    size_t sumstep;    Size winsize;    Range xrange;    const int** p;    const int** pq;    ConcurrentRectVector* vec;};        }    CvSeq*cvHaarDetectObjectsForROC( const CvArr* _img,                      CvHaarClassifierCascade* cascade, CvMemStorage* storage,                     std::vector<int>& rejectLevels, std::vector<double>& levelWeights,                     double scaleFactor, int minNeighbors, int flags,                      CvSize minSize, CvSize maxSize, bool outputRejectLevels ){    const double GROUP_EPS = 0.2;    CvMat stub, *img = (CvMat*)_img;    cv::Ptr<CvMat> temp, sum, tilted, sqsum, normImg, sumcanny, imgSmall;    CvSeq* result_seq = 0;    cv::Ptr<CvMemStorage> temp_storage;    cv::ConcurrentRectVector allCandidates;    std::vector<cv::Rect> rectList;    std::vector<int> rweights;    double factor;    int coi;    bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;    bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;    bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;    if( !CV_IS_HAAR_CLASSIFIER(cascade) )        CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );    if( !storage )        CV_Error( CV_StsNullPtr, "Null storage pointer" );    img = cvGetMat( img, &stub, &coi );    if( coi )        CV_Error( CV_BadCOI, "COI is not supported" );    if( CV_MAT_DEPTH(img->type) != CV_8U )        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );        if( scaleFactor <= 1 )        CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );    if( findBiggestObject )        flags &= ~CV_HAAR_SCALE_IMAGE;        if( maxSize.height == 0 || maxSize.width == 0 )    {        maxSize.height = img->rows;        maxSize.width = img->cols;    }    temp = cvCreateMat( img->rows, img->cols, CV_8UC1 );    sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );    sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 );    if( !cascade->hid_cascade )        icvCreateHidHaarClassifierCascade(cascade);    if( cascade->hid_cascade->has_tilted_features )        tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );    result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );    if( CV_MAT_CN(img->type) > 1 )    {        cvCvtColor( img, temp, CV_BGR2GRAY );        img = temp;    }    if( findBiggestObject )        flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING);    if( flags & CV_HAAR_SCALE_IMAGE )    {        CvSize winSize0 = cascade->orig_window_size;#ifdef HAVE_IPP        int use_ipp = cascade->hid_cascade->ipp_stages != 0;        if( use_ipp )            normImg = cvCreateMat( img->rows, img->cols, CV_32FC1 );#endif        imgSmall = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 );        for( factor = 1; ; factor *= scaleFactor )        {            CvSize winSize = { cvRound(winSize0.width*factor),                                cvRound(winSize0.height*factor) };            CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) };            CvSize sz1 = { sz.width - winSize0.width + 1, sz.height - winSize0.height + 1 };            CvRect equRect = { icv_object_win_border, icv_object_win_border,                winSize0.width - icv_object_win_border*2,                winSize0.height - icv_object_win_border*2 };            CvMat img1, sum1, sqsum1, norm1, tilted1, mask1;            CvMat* _tilted = 0;            if( sz1.width <= 0 || sz1.height <= 0 )                break;            if( winSize.width > maxSize.width || winSize.height > maxSize.height )                break;            if( winSize.width < minSize.width || winSize.height < minSize.height )                continue;            img1 = cvMat( sz.height, sz.width, CV_8UC1, imgSmall->data.ptr );            sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr );            sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr );            if( tilted )            {                tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr );                _tilted = &tilted1;            }            norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, normImg ? normImg->data.ptr : 0 );            mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr );            cvResize( img, &img1, CV_INTER_LINEAR );            cvIntegral( &img1, &sum1, &sqsum1, _tilted );            int ystep = factor > 2 ? 1 : 2;        #ifdef HAVE_TBB            const int LOCS_PER_THREAD = 1000;            int stripCount = ((sz1.width/ystep)*(sz1.height + ystep-1)/ystep + LOCS_PER_THREAD/2)/LOCS_PER_THREAD;            stripCount = std::min(std::max(stripCount, 1), 100);        #else            const int stripCount = 1;        #endif            #ifdef HAVE_IPP            if( use_ipp )            {                cv::Mat fsum(sum1.rows, sum1.cols, CV_32F, sum1.data.ptr, sum1.step);                cv::Mat(&sum1).convertTo(fsum, CV_32F, 1, -(1<<24));            }            else#endif                cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, _tilted, 1. );                                    cv::Mat _norm1(&norm1), _mask1(&mask1);            cv::parallel_for(cv::BlockedRange(0, stripCount),                         cv::HaarDetectObjects_ScaleImage_Invoker(cascade,                                (((sz1.height + stripCount - 1)/stripCount + ystep-1)/ystep)*ystep,                                factor, cv::Mat(&sum1), cv::Mat(&sqsum1), &_norm1, &_mask1,                                cv::Rect(equRect), allCandidates, rejectLevels, levelWeights, outputRejectLevels));        }    }    else    {        int n_factors = 0;        cv::Rect scanROI;        cvIntegral( img, sum, sqsum, tilted );        if( doCannyPruning )        {            sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );            cvCanny( img, temp, 0, 50, 3 );            cvIntegral( temp, sumcanny );        }        for( n_factors = 0, factor = 1;             factor*cascade->orig_window_size.width < img->cols - 10 &&             factor*cascade->orig_window_size.height < img->rows - 10;             n_factors++, factor *= scaleFactor )            ;        if( findBiggestObject )        {            scaleFactor = 1./scaleFactor;            factor *= scaleFactor;        }        else            factor = 1;        for( ; n_factors-- > 0; factor *= scaleFactor )        {            const double ystep = std::max( 2., factor );            CvSize winSize = { cvRound( cascade->orig_window_size.width * factor ),                                cvRound( cascade->orig_window_size.height * factor )};            CvRect equRect = { 0, 0, 0, 0 };            int *p[4] = {0,0,0,0};            int *pq[4] = {0,0,0,0};            int startX = 0, startY = 0;            int endX = cvRound((img->cols - winSize.width) / ystep);            int endY = cvRound((img->rows - winSize.height) / ystep);            if( winSize.width < minSize.width || winSize.height < minSize.height )            {                if( findBiggestObject )                    break;                continue;            }            cvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor );            cvZero( temp );            if( doCannyPruning )            {                equRect.x = cvRound(winSize.width*0.15);                equRect.y = cvRound(winSize.height*0.15);                equRect.width = cvRound(winSize.width*0.7);                equRect.height = cvRound(winSize.height*0.7);                p[0] = (int*)(sumcanny->data.ptr + equRect.y*sumcanny->step) + equRect.x;                p[1] = (int*)(sumcanny->data.ptr + equRect.y*sumcanny->step)                            + equRect.x + equRect.width;                p[2] = (int*)(sumcanny->data.ptr + (equRect.y + equRect.height)*sumcanny->step) + equRect.x;                p[3] = (int*)(sumcanny->data.ptr + (equRect.y + equRect.height)*sumcanny->step)                            + equRect.x + equRect.width;                pq[0] = (int*)(sum->data.ptr + equRect.y*sum->step) + equRect.x;                pq[1] = (int*)(sum->data.ptr + equRect.y*sum->step)                            + equRect.x + equRect.width;                pq[2] = (int*)(sum->data.ptr + (equRect.y + equRect.height)*sum->step) + equRect.x;                pq[3] = (int*)(sum->data.ptr + (equRect.y + equRect.height)*sum->step)                            + equRect.x + equRect.width;            }            if( scanROI.area() > 0 )            {                //adjust start_height and stop_height                startY = cvRound(scanROI.y / ystep);                endY = cvRound((scanROI.y + scanROI.height - winSize.height) / ystep);                startX = cvRound(scanROI.x / ystep);                endX = cvRound((scanROI.x + scanROI.width - winSize.width) / ystep);            }            cv::parallel_for(cv::BlockedRange(startY, endY),                cv::HaarDetectObjects_ScaleCascade_Invoker(cascade, winSize, cv::Range(startX, endX),                                                           ystep, sum->step, (const int**)p,                                                           (const int**)pq, allCandidates ));            if( findBiggestObject && !allCandidates.empty() && scanROI.area() == 0 )            {                rectList.resize(allCandidates.size());                std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());                                groupRectangles(rectList, std::max(minNeighbors, 1), GROUP_EPS);                                if( !rectList.empty() )                {                    size_t i, sz = rectList.size();                    cv::Rect maxRect;                                        for( i = 0; i < sz; i++ )                    {                        if( rectList[i].area() > maxRect.area() )                            maxRect = rectList[i];                    }                                        allCandidates.push_back(maxRect);                                        scanROI = maxRect;                    int dx = cvRound(maxRect.width*GROUP_EPS);                    int dy = cvRound(maxRect.height*GROUP_EPS);                    scanROI.x = std::max(scanROI.x - dx, 0);                    scanROI.y = std::max(scanROI.y - dy, 0);                    scanROI.width = std::min(scanROI.width + dx*2, img->cols-1-scanROI.x);                    scanROI.height = std::min(scanROI.height + dy*2, img->rows-1-scanROI.y);                                    double minScale = roughSearch ? 0.6 : 0.4;                    minSize.width = cvRound(maxRect.width*minScale);                    minSize.height = cvRound(maxRect.height*minScale);                }            }        }    }    rectList.resize(allCandidates.size());    if(!allCandidates.empty())        std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());        if( minNeighbors != 0 || findBiggestObject )    {        if( outputRejectLevels )        {            groupRectangles(rectList, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );        }        else        {            groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);        }    }    else        rweights.resize(rectList.size(),0);            if( findBiggestObject && rectList.size() )    {        CvAvgComp result_comp = {{0,0,0,0},0};                for( size_t i = 0; i < rectList.size(); i++ )        {            cv::Rect r = rectList[i];            if( r.area() > cv::Rect(result_comp.rect).area() )            {                result_comp.rect = r;                result_comp.neighbors = rweights[i];            }        }        cvSeqPush( result_seq, &result_comp );    }    else    {        for( size_t i = 0; i < rectList.size(); i++ )        {            CvAvgComp c;            c.rect = rectList[i];            c.neighbors = !rweights.empty() ? rweights[i] : 0;            cvSeqPush( result_seq, &c );        }    }    return result_seq;}CV_IMPL CvSeq*cvHaarDetectObjects( const CvArr* _img,                      CvHaarClassifierCascade* cascade, CvMemStorage* storage,                     double scaleFactor,                     int minNeighbors, int flags, CvSize minSize, CvSize maxSize ){    std::vector<int> fakeLevels;    std::vector<double> fakeWeights;    return cvHaarDetectObjectsForROC( _img, cascade, storage, fakeLevels, fakeWeights,                                 scaleFactor, minNeighbors, flags, minSize, maxSize, false );}static CvHaarClassifierCascade*icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size ){    int i;    CvHaarClassifierCascade* cascade = icvCreateHaarClassifierCascade(n);    cascade->orig_window_size = orig_window_size;    for( i = 0; i < n; i++ )    {        int j, count, l;        float threshold = 0;        const char* stage = input_cascade[i];        int dl = 0;        /* tree links */        int parent = -1;        int next = -1;        sscanf( stage, "%d%n", &count, &dl );        stage += dl;        assert( count > 0 );        cascade->stage_classifier[i].count = count;        cascade->stage_classifier[i].classifier =            (CvHaarClassifier*)cvAlloc( count*sizeof(cascade->stage_classifier[i].classifier[0]));        for( j = 0; j < count; j++ )        {            CvHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;            int k, rects = 0;            char str[100];            sscanf( stage, "%d%n", &classifier->count, &dl );            stage += dl;            classifier->haar_feature = (CvHaarFeature*) cvAlloc(                classifier->count * ( sizeof( *classifier->haar_feature ) +                                      sizeof( *classifier->threshold ) +                                      sizeof( *classifier->left ) +                                      sizeof( *classifier->right ) ) +                (classifier->count + 1) * sizeof( *classifier->alpha ) );            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);            classifier->left = (int*) (classifier->threshold + classifier->count);            classifier->right = (int*) (classifier->left + classifier->count);            classifier->alpha = (float*) (classifier->right + classifier->count);            for( l = 0; l < classifier->count; l++ )            {                sscanf( stage, "%d%n", &rects, &dl );                stage += dl;                assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );                for( k = 0; k < rects; k++ )                {                    CvRect r;                    int band = 0;                    sscanf( stage, "%d%d%d%d%d%f%n",                            &r.x, &r.y, &r.width, &r.height, &band,                            &(classifier->haar_feature[l].rect[k].weight), &dl );                    stage += dl;                    classifier->haar_feature[l].rect[k].r = r;                }                sscanf( stage, "%s%n", str, &dl );                stage += dl;                classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0;                for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ )                {                    memset( classifier->haar_feature[l].rect + k, 0,                            sizeof(classifier->haar_feature[l].rect[k]) );                }                sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]),                                       &(classifier->left[l]),                                       &(classifier->right[l]), &dl );                stage += dl;            }            for( l = 0; l <= classifier->count; l++ )            {                sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl );                stage += dl;            }        }        sscanf( stage, "%f%n", &threshold, &dl );        stage += dl;        cascade->stage_classifier[i].threshold = threshold;        /* load tree links */        if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 )        {            parent = i - 1;            next = -1;        }        stage += dl;        cascade->stage_classifier[i].parent = parent;        cascade->stage_classifier[i].next = next;        cascade->stage_classifier[i].child = -1;        if( parent != -1 && cascade->stage_classifier[parent].child == -1 )        {            cascade->stage_classifier[parent].child = i;        }    }    return cascade;}#ifndef _MAX_PATH#define _MAX_PATH 1024#endifCV_IMPL CvHaarClassifierCascade*cvLoadHaarClassifierCascade( const char* directory, CvSize orig_window_size ){    const char** input_cascade = 0;    CvHaarClassifierCascade *cascade = 0;    int i, n;    const char* slash;    char name[_MAX_PATH];    int size = 0;    char* ptr = 0;    if( !directory )        CV_Error( CV_StsNullPtr, "Null path is passed" );    n = (int)strlen(directory)-1;    slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/";    /* try to read the classifier from directory */    for( n = 0; ; n++ )    {        sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n );        FILE* f = fopen( name, "rb" );        if( !f )            break;        fseek( f, 0, SEEK_END );        size += ftell( f ) + 1;        fclose(f);    }    if( n == 0 && slash[0] )        return (CvHaarClassifierCascade*)cvLoad( directory );    if( n == 0 )        CV_Error( CV_StsBadArg, "Invalid path" );    size += (n+1)*sizeof(char*);    input_cascade = (const char**)cvAlloc( size );    ptr = (char*)(input_cascade + n + 1);    for( i = 0; i < n; i++ )    {        sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i );        FILE* f = fopen( name, "rb" );        if( !f )            CV_Error( CV_StsError, "" );        fseek( f, 0, SEEK_END );        size = ftell( f );        fseek( f, 0, SEEK_SET );        fread( ptr, 1, size, f );        fclose(f);        input_cascade[i] = ptr;        ptr += size;        *ptr++ = '\0';    }    input_cascade[n] = 0;    cascade = icvLoadCascadeCART( input_cascade, n, orig_window_size );    if( input_cascade )        cvFree( &input_cascade );    return cascade;}CV_IMPL voidcvReleaseHaarClassifierCascade( CvHaarClassifierCascade** _cascade ){    if( _cascade && *_cascade )    {        int i, j;        CvHaarClassifierCascade* cascade = *_cascade;        for( i = 0; i < cascade->count; i++ )        {            for( j = 0; j < cascade->stage_classifier[i].count; j++ )                cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature );            cvFree( &cascade->stage_classifier[i].classifier );        }        icvReleaseHidHaarClassifierCascade( &cascade->hid_cascade );        cvFree( _cascade );    }}/****************************************************************************************\*                                  Persistence functions                                 *\****************************************************************************************//* field names */#define ICV_HAAR_SIZE_NAME            "size"#define ICV_HAAR_STAGES_NAME          "stages"#define ICV_HAAR_TREES_NAME             "trees"#define ICV_HAAR_FEATURE_NAME             "feature"#define ICV_HAAR_RECTS_NAME                 "rects"#define ICV_HAAR_TILTED_NAME                "tilted"#define ICV_HAAR_THRESHOLD_NAME           "threshold"#define ICV_HAAR_LEFT_NODE_NAME           "left_node"#define ICV_HAAR_LEFT_VAL_NAME            "left_val"#define ICV_HAAR_RIGHT_NODE_NAME          "right_node"#define ICV_HAAR_RIGHT_VAL_NAME           "right_val"#define ICV_HAAR_STAGE_THRESHOLD_NAME   "stage_threshold"#define ICV_HAAR_PARENT_NAME            "parent"#define ICV_HAAR_NEXT_NAME              "next"static inticvIsHaarClassifier( const void* struct_ptr ){    return CV_IS_HAAR_CLASSIFIER( struct_ptr );}static void*icvReadHaarClassifier( CvFileStorage* fs, CvFileNode* node ){    CvHaarClassifierCascade* cascade = NULL;    char buf[256];    CvFileNode* seq_fn = NULL; /* sequence */    CvFileNode* fn = NULL;    CvFileNode* stages_fn = NULL;    CvSeqReader stages_reader;    int n;    int i, j, k, l;    int parent, next;    stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME );    if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) )        CV_Error( CV_StsError, "Invalid stages node" );    n = stages_fn->data.seq->total;    cascade = icvCreateHaarClassifierCascade(n);    /* read size */    seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME );    if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 )        CV_Error( CV_StsError, "size node is not a valid sequence." );    fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 0 );    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )        CV_Error( CV_StsError, "Invalid size node: width must be positive integer" );    cascade->orig_window_size.width = fn->data.i;    fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 1 );    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )        CV_Error( CV_StsError, "Invalid size node: height must be positive integer" );    cascade->orig_window_size.height = fn->data.i;    cvStartReadSeq( stages_fn->data.seq, &stages_reader );    for( i = 0; i < n; ++i )    {        CvFileNode* stage_fn;        CvFileNode* trees_fn;        CvSeqReader trees_reader;        stage_fn = (CvFileNode*) stages_reader.ptr;        if( !CV_NODE_IS_MAP( stage_fn->tag ) )        {            sprintf( buf, "Invalid stage %d", i );            CV_Error( CV_StsError, buf );        }        trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME );        if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag )            || trees_fn->data.seq->total <= 0 )        {            sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i );            CV_Error( CV_StsError, buf );        }        cascade->stage_classifier[i].classifier =            (CvHaarClassifier*) cvAlloc( trees_fn->data.seq->total                * sizeof( cascade->stage_classifier[i].classifier[0] ) );        for( j = 0; j < trees_fn->data.seq->total; ++j )        {            cascade->stage_classifier[i].classifier[j].haar_feature = NULL;        }        cascade->stage_classifier[i].count = trees_fn->data.seq->total;        cvStartReadSeq( trees_fn->data.seq, &trees_reader );        for( j = 0; j < trees_fn->data.seq->total; ++j )        {            CvFileNode* tree_fn;            CvSeqReader tree_reader;            CvHaarClassifier* classifier;            int last_idx;            classifier = &cascade->stage_classifier[i].classifier[j];            tree_fn = (CvFileNode*) trees_reader.ptr;            if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 )            {                sprintf( buf, "Tree node is not a valid sequence."                         " (stage %d, tree %d)", i, j );                CV_Error( CV_StsError, buf );            }            classifier->count = tree_fn->data.seq->total;            classifier->haar_feature = (CvHaarFeature*) cvAlloc(                classifier->count * ( sizeof( *classifier->haar_feature ) +                                      sizeof( *classifier->threshold ) +                                      sizeof( *classifier->left ) +                                      sizeof( *classifier->right ) ) +                (classifier->count + 1) * sizeof( *classifier->alpha ) );            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);            classifier->left = (int*) (classifier->threshold + classifier->count);            classifier->right = (int*) (classifier->left + classifier->count);            classifier->alpha = (float*) (classifier->right + classifier->count);            cvStartReadSeq( tree_fn->data.seq, &tree_reader );            for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k )            {                CvFileNode* node_fn;                CvFileNode* feature_fn;                CvFileNode* rects_fn;                CvSeqReader rects_reader;                node_fn = (CvFileNode*) tree_reader.ptr;                if( !CV_NODE_IS_MAP( node_fn->tag ) )                {                    sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)",                             k, i, j );                    CV_Error( CV_StsError, buf );                }                feature_fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_FEATURE_NAME );                if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) )                {                    sprintf( buf, "Feature node is not a valid map. "                             "(stage %d, tree %d, node %d)", i, j, k );                    CV_Error( CV_StsError, buf );                }                rects_fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_RECTS_NAME );                if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag )                    || rects_fn->data.seq->total < 1                    || rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX )                {                    sprintf( buf, "Rects node is not a valid sequence. "                             "(stage %d, tree %d, node %d)", i, j, k );                    CV_Error( CV_StsError, buf );                }                cvStartReadSeq( rects_fn->data.seq, &rects_reader );                for( l = 0; l < rects_fn->data.seq->total; ++l )                {                    CvFileNode* rect_fn;                    CvRect r;                    rect_fn = (CvFileNode*) rects_reader.ptr;                    if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 )                    {                        sprintf( buf, "Rect %d is not a valid sequence. "                                 "(stage %d, tree %d, node %d)", l, i, j, k );                        CV_Error( CV_StsError, buf );                    }                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 );                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )                    {                        sprintf( buf, "x coordinate must be non-negative integer. "                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );                        CV_Error( CV_StsError, buf );                    }                    r.x = fn->data.i;                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 );                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )                    {                        sprintf( buf, "y coordinate must be non-negative integer. "                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );                        CV_Error( CV_StsError, buf );                    }                    r.y = fn->data.i;                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 );                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0                        || r.x + fn->data.i > cascade->orig_window_size.width )                    {                        sprintf( buf, "width must be positive integer and "                                 "(x + width) must not exceed window width. "                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );                        CV_Error( CV_StsError, buf );                    }                    r.width = fn->data.i;                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 );                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0                        || r.y + fn->data.i > cascade->orig_window_size.height )                    {                        sprintf( buf, "height must be positive integer and "                                 "(y + height) must not exceed window height. "                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );                        CV_Error( CV_StsError, buf );                    }                    r.height = fn->data.i;                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 );                    if( !CV_NODE_IS_REAL( fn->tag ) )                    {                        sprintf( buf, "weight must be real number. "                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );                        CV_Error( CV_StsError, buf );                    }                    classifier->haar_feature[k].rect[l].weight = (float) fn->data.f;                    classifier->haar_feature[k].rect[l].r = r;                    CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader );                } /* for each rect */                for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l )                {                    classifier->haar_feature[k].rect[l].weight = 0;                    classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 );                }                fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME);                if( !fn || !CV_NODE_IS_INT( fn->tag ) )                {                    sprintf( buf, "tilted must be 0 or 1. "                             "(stage %d, tree %d, node %d)", i, j, k );                    CV_Error( CV_StsError, buf );                }                classifier->haar_feature[k].tilted = ( fn->data.i != 0 );                fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME);                if( !fn || !CV_NODE_IS_REAL( fn->tag ) )                {                    sprintf( buf, "threshold must be real number. "                             "(stage %d, tree %d, node %d)", i, j, k );                    CV_Error( CV_StsError, buf );                }                classifier->threshold[k] = (float) fn->data.f;                fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME);                if( fn )                {                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k                        || fn->data.i >= tree_fn->data.seq->total )                    {                        sprintf( buf, "left node must be valid node number. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    /* left node */                    classifier->left[k] = fn->data.i;                }                else                {                    fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_VAL_NAME );                    if( !fn )                    {                        sprintf( buf, "left node or left value must be specified. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    if( !CV_NODE_IS_REAL( fn->tag ) )                    {                        sprintf( buf, "left value must be real number. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    /* left value */                    if( last_idx >= classifier->count + 1 )                    {                        sprintf( buf, "Tree structure is broken: too many values. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    classifier->left[k] = -last_idx;                    classifier->alpha[last_idx++] = (float) fn->data.f;                }                fn = cvGetFileNodeByName( fs, node_fn,ICV_HAAR_RIGHT_NODE_NAME);                if( fn )                {                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k                        || fn->data.i >= tree_fn->data.seq->total )                    {                        sprintf( buf, "right node must be valid node number. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    /* right node */                    classifier->right[k] = fn->data.i;                }                else                {                    fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_VAL_NAME );                    if( !fn )                    {                        sprintf( buf, "right node or right value must be specified. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    if( !CV_NODE_IS_REAL( fn->tag ) )                    {                        sprintf( buf, "right value must be real number. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    /* right value */                    if( last_idx >= classifier->count + 1 )                    {                        sprintf( buf, "Tree structure is broken: too many values. "                                 "(stage %d, tree %d, node %d)", i, j, k );                        CV_Error( CV_StsError, buf );                    }                    classifier->right[k] = -last_idx;                    classifier->alpha[last_idx++] = (float) fn->data.f;                }                CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader );            } /* for each node */            if( last_idx != classifier->count + 1 )            {                sprintf( buf, "Tree structure is broken: too few values. "                         "(stage %d, tree %d)", i, j );                CV_Error( CV_StsError, buf );            }            CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader );        } /* for each tree */        fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME);        if( !fn || !CV_NODE_IS_REAL( fn->tag ) )        {            sprintf( buf, "stage threshold must be real number. (stage %d)", i );            CV_Error( CV_StsError, buf );        }        cascade->stage_classifier[i].threshold = (float) fn->data.f;        parent = i - 1;        next = -1;        fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME );        if( !fn || !CV_NODE_IS_INT( fn->tag )            || fn->data.i < -1 || fn->data.i >= cascade->count )        {            sprintf( buf, "parent must be integer number. (stage %d)", i );            CV_Error( CV_StsError, buf );        }        parent = fn->data.i;        fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME );        if( !fn || !CV_NODE_IS_INT( fn->tag )            || fn->data.i < -1 || fn->data.i >= cascade->count )        {            sprintf( buf, "next must be integer number. (stage %d)", i );            CV_Error( CV_StsError, buf );        }        next = fn->data.i;        cascade->stage_classifier[i].parent = parent;        cascade->stage_classifier[i].next = next;        cascade->stage_classifier[i].child = -1;        if( parent != -1 && cascade->stage_classifier[parent].child == -1 )        {            cascade->stage_classifier[parent].child = i;        }        CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader );    } /* for each stage */    return cascade;}static voidicvWriteHaarClassifier( CvFileStorage* fs, const char* name, const void* struct_ptr,                        CvAttrList attributes ){    int i, j, k, l;    char buf[256];    const CvHaarClassifierCascade* cascade = (const CvHaarClassifierCascade*) struct_ptr;    /* TODO: parameters check */    cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes );    cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW );    cvWriteInt( fs, NULL, cascade->orig_window_size.width );    cvWriteInt( fs, NULL, cascade->orig_window_size.height );    cvEndWriteStruct( fs ); /* size */    cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ );    for( i = 0; i < cascade->count; ++i )    {        cvStartWriteStruct( fs, NULL, CV_NODE_MAP );        sprintf( buf, "stage %d", i );        cvWriteComment( fs, buf, 1 );        cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ );        for( j = 0; j < cascade->stage_classifier[i].count; ++j )        {            CvHaarClassifier* tree = &cascade->stage_classifier[i].classifier[j];            cvStartWriteStruct( fs, NULL, CV_NODE_SEQ );            sprintf( buf, "tree %d", j );            cvWriteComment( fs, buf, 1 );            for( k = 0; k < tree->count; ++k )            {                CvHaarFeature* feature = &tree->haar_feature[k];                cvStartWriteStruct( fs, NULL, CV_NODE_MAP );                if( k )                {                    sprintf( buf, "node %d", k );                }                else                {                    sprintf( buf, "root node" );                }                cvWriteComment( fs, buf, 1 );                cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP );                cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ );                for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l )                {                    cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW );                    cvWriteInt(  fs, NULL, feature->rect[l].r.x );                    cvWriteInt(  fs, NULL, feature->rect[l].r.y );                    cvWriteInt(  fs, NULL, feature->rect[l].r.width );                    cvWriteInt(  fs, NULL, feature->rect[l].r.height );                    cvWriteReal( fs, NULL, feature->rect[l].weight );                    cvEndWriteStruct( fs ); /* rect */                }                cvEndWriteStruct( fs ); /* rects */                cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted );                cvEndWriteStruct( fs ); /* feature */                cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]);                if( tree->left[k] > 0 )                {                    cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] );                }                else                {                    cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME,                        tree->alpha[-tree->left[k]] );                }                if( tree->right[k] > 0 )                {                    cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] );                }                else                {                    cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME,                        tree->alpha[-tree->right[k]] );                }                cvEndWriteStruct( fs ); /* split */            }            cvEndWriteStruct( fs ); /* tree */        }        cvEndWriteStruct( fs ); /* trees */        cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME, cascade->stage_classifier[i].threshold);        cvWriteInt( fs, ICV_HAAR_PARENT_NAME, cascade->stage_classifier[i].parent );        cvWriteInt( fs, ICV_HAAR_NEXT_NAME, cascade->stage_classifier[i].next );        cvEndWriteStruct( fs ); /* stage */    } /* for each stage */    cvEndWriteStruct( fs ); /* stages */    cvEndWriteStruct( fs ); /* root */}static void*icvCloneHaarClassifier( const void* struct_ptr ){    CvHaarClassifierCascade* cascade = NULL;    int i, j, k, n;    const CvHaarClassifierCascade* cascade_src =        (const CvHaarClassifierCascade*) struct_ptr;    n = cascade_src->count;    cascade = icvCreateHaarClassifierCascade(n);    cascade->orig_window_size = cascade_src->orig_window_size;    for( i = 0; i < n; ++i )    {        cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent;        cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next;        cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child;        cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold;        cascade->stage_classifier[i].count = 0;        cascade->stage_classifier[i].classifier =            (CvHaarClassifier*) cvAlloc( cascade_src->stage_classifier[i].count                * sizeof( cascade->stage_classifier[i].classifier[0] ) );        cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count;        for( j = 0; j < cascade->stage_classifier[i].count; ++j )            cascade->stage_classifier[i].classifier[j].haar_feature = NULL;        for( j = 0; j < cascade->stage_classifier[i].count; ++j )        {            const CvHaarClassifier* classifier_src =                &cascade_src->stage_classifier[i].classifier[j];            CvHaarClassifier* classifier =                &cascade->stage_classifier[i].classifier[j];            classifier->count = classifier_src->count;            classifier->haar_feature = (CvHaarFeature*) cvAlloc(                classifier->count * ( sizeof( *classifier->haar_feature ) +                                      sizeof( *classifier->threshold ) +                                      sizeof( *classifier->left ) +                                      sizeof( *classifier->right ) ) +                (classifier->count + 1) * sizeof( *classifier->alpha ) );            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);            classifier->left = (int*) (classifier->threshold + classifier->count);            classifier->right = (int*) (classifier->left + classifier->count);            classifier->alpha = (float*) (classifier->right + classifier->count);            for( k = 0; k < classifier->count; ++k )            {                classifier->haar_feature[k] = classifier_src->haar_feature[k];                classifier->threshold[k] = classifier_src->threshold[k];                classifier->left[k] = classifier_src->left[k];                classifier->right[k] = classifier_src->right[k];                classifier->alpha[k] = classifier_src->alpha[k];            }            classifier->alpha[classifier->count] =                classifier_src->alpha[classifier->count];        }    }    return cascade;}CvType haar_type( CV_TYPE_NAME_HAAR, icvIsHaarClassifier,                  (CvReleaseFunc)cvReleaseHaarClassifierCascade,                  icvReadHaarClassifier, icvWriteHaarClassifier,                  icvCloneHaarClassifier );#if 0namespace cv{HaarClassifierCascade::HaarClassifierCascade() {}HaarClassifierCascade::HaarClassifierCascade(const String& filename){ load(filename); }    bool HaarClassifierCascade::load(const String& filename){    cascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));    return (CvHaarClassifierCascade*)cascade != 0;}void HaarClassifierCascade::detectMultiScale( const Mat& image,                       Vector<Rect>& objects, double scaleFactor,                       int minNeighbors, int flags,                       Size minSize ){    MemStorage storage(cvCreateMemStorage(0));    CvMat _image = image;    CvSeq* _objects = cvHaarDetectObjects( &_image, cascade, storage, scaleFactor,                                           minNeighbors, flags, minSize );    Seq<Rect>(_objects).copyTo(objects);}int HaarClassifierCascade::runAt(Point pt, int startStage, int) const{    return cvRunHaarClassifierCascade(cascade, pt, startStage);}void HaarClassifierCascade::setImages( const Mat& sum, const Mat& sqsum,                                       const Mat& tilted, double scale ){    CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;    cvSetImagesForHaarClassifierCascade( cascade, &_sum, &_sqsum, &_tilted, scale );}}#endif/* End of file. */

原创粉丝点击