生成模型(Generative Model)Vs 判别模型(Discriminative Model)

来源:互联网 发布:照片排版软件 编辑:程序博客网 时间:2024/05/17 22:57

看HMM的是很看到了生成模型,于是提出了一个问题,什么是生成模型?查了一下资料,总算大致了解了,把内容贴在这里,以备翻阅。

      判别模型(Discriminative Model),又可以称为条件模型,或条件概率模型。估计的是条件概率分布(conditional distribution),p(class|context)。利用正负例和分类标签,主要关心判别模型的边缘分布。其目标函数直接对应于分类准确率。

      主要特点:寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。

      优点:(1)分类边界更灵活,比使用纯概率方法或生产模型得到的更高级;(2)能清晰的分辨出多类或某一类与其他类之间的差异特征;(3)在聚类、视角变化、部分遮挡、尺度改变等方面效果较好;(4)适用于较多类别的识别;(5)判别模型的性能比生成模型要简单,比较容易学习。

      缺点:(1)不能反映训练数据本身的特性,即能力有限,可以告诉你的是1还是2,但没有办法把整个场景描述出来;(2)缺少生成模型的优点,即先验结构的不确定性;(3)黑盒操作,即变量间的关系不清楚,不可视。

      常见的主要有:logistic regression、SVMs、traditional neural networks、Nearest neighbor、Conditional random fields。

      主要应用:Image and document classification、Biosequence analysis、Time series prediction。

   生成模型(Generative Model),又叫产生式模型。估计的是联合概率分布(joint probability distribution),p(class, context)=p(class|context)*p(context)。用于随机生成的观察值建模,特别是在给定某些隐藏参数情况下。在机器学习中,或用于直接对数据建模(用概率密度函数对观察到的样本数据建模),或作为生成条件概率密度函数的中间步骤。通过使用贝叶斯规则可以从生成模型中得到条件分布。如果观察到的数据是完全由生成模型所生成的,那么就可以拟合生成模型的参数,从而仅可能的增加数据相似度。但数据很少能由生成模型完全得到,所以比较准确的方式是直接对条件密度函数建模,即使用分类或回归分析。与描述模型的不同是,描述模型中所有变量都是直接测量得到。

      主要特点:(1)一般主要是对后验概率建模,从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度;(2)只关注自己的类本身(即点左下角区域内的概率),不关心到底决策边界在哪。

      优点:(1)实际上带的信息要比判别模型丰富;(2)研究单类问题比判别模型灵活性强;(3)模型可以通过增量学习得到;(4)能用于数据不完整(missing data)情况;(5)很容易将先验知识考虑进去。

      缺点:(1)容易会产生错误分类;(2)学习和计算过程比较复杂。

      常见的主要有:Gaussians、Naive Bayes、Mixtures of multinomials、Mixtures of Gaussians、Mixtures of experts、HMMs、Sigmoidal belief networks、Bayesian networks、Markov random fields。

      主要应用:(1)传统基于规则的或布尔逻辑系统正被统计方法所代替;(2)医学诊断。

      注:所列举的生成模型也可以用判决模型的方法来训练,比如GMM或HMM,训练的方法有EBW(Extended Baum Welch),或最近Fei Sha提出的Large Margin方法。

 

      ps:以上资料来源于互联网,仅限于备忘翻阅,无严谨性和完整性。

原创粉丝点击