Ogre射线精确查询

来源:互联网 发布:逆战一键瞬狙软件下载 编辑:程序博客网 时间:2024/04/30 14:57
bool PickEntity(Ogre::RaySceneQuery* mRaySceneQuery, Ogre::Ray &ray, Ogre::Entity **result, Ogre::uint32 mask ,Ogre::Vector3 &hitpoint, bool excludeInVisible,const Ogre::String& excludeobject, Ogre::Real max_distance)
{
mRaySceneQuery->setRay(ray);
mRaySceneQuery->setQueryMask(mask);
mRaySceneQuery->setQueryTypeMask(Ogre::SceneManager::ENTITY_TYPE_MASK);
mRaySceneQuery->setSortByDistance(true);

if (mRaySceneQuery->execute().size() <= 0) return (false);

// at this point we have raycast to a series of different objects bounding boxes.
// we need to test these different objects to see which is the first polygon hit.
// there are some minor optimizations (distance based) that mean we wont have to
// check all of the objects most of the time, but the worst case scenario is that
// we need to test every triangle of every object.
Ogre::Real closest_distance = max_distance;
Ogre::Vector3 closest_result;
Ogre::RaySceneQueryResult &query_result = mRaySceneQuery->getLastResults();
for (size_t qr_idx = 0; qr_idx < query_result.size(); qr_idx++)
{
// stop checking if we have found a raycast hit that is closer
// than all remaining entities
if ((closest_distance >= 0.0f) && (closest_distance < query_result[qr_idx].distance))
{
break;
}

// only check this result if its a hit against an entity
if ((query_result[qr_idx].movable != NULL) && (query_result[qr_idx].movable->getMovableType().compare("Entity") == 0))
{
// get the entity to check
Ogre::Entity *pentity = static_cast<Ogre::Entity*>(query_result[qr_idx].movable);

if(excludeInVisible)
if (!pentity->getVisible())
continue;
if(pentity->getName() == excludeobject) 
continue;

// mesh data to retrieve
size_t vertex_count;
size_t index_count;
Ogre::Vector3 *vertices;
unsigned long *indices;

// get the mesh information
GetMeshInformationEx(pentity->getMesh(), vertex_count, vertices, index_count, indices,
pentity->getParentNode()->_getDerivedPosition(),
pentity->getParentNode()->_getDerivedOrientation(),
pentity->getParentNode()->_getDerivedScale());
 
//maybe there is a bug in GetMeshInformationEx(),when mesh is a line or a circle, the vertex_count is not multiple of 3
//            if (index_count%3 != 0)
//            {
//                index_count-=index_count%3;
//            }

// test for hitting individual triangles on the mesh
bool new_closest_found = false;
for (int i = 0; i < static_cast<int>(index_count); i += 3) 
{

// check for a hit against this triangle
std::pair<bool, Ogre::Real> hit = Ogre::Math::intersects(ray, vertices[indices[i]],
vertices[indices[i+1]], vertices[indices[i+2]], true, true);

// if it was a hit check if its the closest
if (hit.first)
{
if ((closest_distance < 0.0f) || (hit.second < closest_distance))
{
// this is the closest so far, save it off
closest_distance = hit.second;
new_closest_found = true;
}
}
}

// free the verticies and indicies memory
delete[] vertices;
delete[] indices;

// if we found a new closest raycast for this object, update the
// closest_result before moving on to the next object.
if (new_closest_found)
{
closest_result = ray.getPoint(closest_distance);
(*result) = pentity;
}
}
}

// return the result
if (closest_distance != max_distance)
{
hitpoint = closest_result;
return true;
}
else
{
// raycast failed
return false;
}
}

void GetMeshInformationEx(const Ogre::MeshPtr mesh,
size_t &vertex_count,
Ogre::Vector3* &vertices,
size_t &index_count,
unsigned long* &indices,
const Ogre::Vector3 &position,
const Ogre::Quaternion &orient,
const Ogre::Vector3 &scale)
{
bool added_shared = false;
size_t current_offset = 0;
size_t shared_offset = 0;
size_t next_offset = 0;
size_t index_offset = 0;

vertex_count = index_count = 0;

// Calculate how many vertices and indices we're going to need
for (unsigned short i = 0; i < mesh->getNumSubMeshes(); ++i)
{
Ogre::SubMesh* submesh = mesh->getSubMesh( i );

// We only need to add the shared vertices once
if(submesh->useSharedVertices)
{
if( !added_shared )
{
vertex_count += mesh->sharedVertexData->vertexCount;
added_shared = true;
}
}
else
{
vertex_count += submesh->vertexData->vertexCount;
}

// Add the indices
index_count += submesh->indexData->indexCount;
}


// Allocate space for the vertices and indices
vertices = new Ogre::Vector3[vertex_count];
indices = new unsigned long[index_count];

added_shared = false;

// Run through the submeshes again, adding the data into the arrays
for ( unsigned short i = 0; i < mesh->getNumSubMeshes(); ++i)
{
Ogre::SubMesh* submesh = mesh->getSubMesh(i);

Ogre::VertexData* vertex_data = submesh->useSharedVertices ? mesh->sharedVertexData : submesh->vertexData;

if((!submesh->useSharedVertices)||(submesh->useSharedVertices && !added_shared))
{
if(submesh->useSharedVertices)
{
added_shared = true;
shared_offset = current_offset;
}

const Ogre::VertexElement* posElem = vertex_data->vertexDeclaration->findElementBySemantic(Ogre::VES_POSITION);

Ogre::HardwareVertexBufferSharedPtr vbuf = vertex_data->vertexBufferBinding->getBuffer(posElem->getSource());

unsigned char* vertex = static_cast<unsigned char*>(vbuf->lock(Ogre::HardwareBuffer::HBL_READ_ONLY));

// There is _no_ baseVertexPointerToElement() which takes an Ogre::Real or a double
//  as second argument. So make it float, to avoid trouble when Ogre::Real will
//  be comiled/typedefed as double:
//      Ogre::Real* pReal;
float* pReal;

for( size_t j = 0; j < vertex_data->vertexCount; ++j, vertex += vbuf->getVertexSize())
{
posElem->baseVertexPointerToElement(vertex, &pReal);

Ogre::Vector3 pt(pReal[0], pReal[1], pReal[2]);

vertices[current_offset + j] = (orient * (pt * scale)) + position;
}

vbuf->unlock();
next_offset += vertex_data->vertexCount;
}


Ogre::IndexData* index_data = submesh->indexData;
size_t numTris = index_data->indexCount / 3;
Ogre::HardwareIndexBufferSharedPtr ibuf = index_data->indexBuffer;

bool use32bitindexes = (ibuf->getType() == Ogre::HardwareIndexBuffer::IT_32BIT);

unsigned long*  pLong = static_cast<unsigned long*>(ibuf->lock(Ogre::HardwareBuffer::HBL_READ_ONLY));
unsigned short* pShort = reinterpret_cast<unsigned short*>(pLong);

size_t offset = (submesh->useSharedVertices)? shared_offset : current_offset;

if ( use32bitindexes )
{
for ( size_t k = 0; k < numTris*3; ++k)
{
indices[index_offset++] = pLong[k] + static_cast<unsigned long>(offset);
}
}
else
{
for ( size_t k = 0; k < numTris*3; ++k)
{
indices[index_offset++] = static_cast<unsigned long>(pShort[k]) + static_cast<unsigned long>(offset);
}
}

ibuf->unlock();
current_offset = next_offset;
}
}

使用时用如下代码即可(可能需要根据实际情况有所改动):
Entity* rayResult=NULL;
Vector3 hitPoint;
CEGUI::Point mousePos= CEGUI::MouseCursor::getSingleton().getPosition();
Ray mouseRay = mCamera->getCameraToViewportRay(mousePos.d_x/float(e.state.width),mousePos.d_y/float(e.state.height));
RaySceneQuery* rayQuery=mSceneMgr->createRayQuery(Ray());
if (PickEntity(rayQuery,mouseRay,&rayResult,QF_moveable_object,hitPoint,true))
rayResult->getParentSceneNode(); //find a entity
以上源码参考Ogitor,为了配合自己的程序,稍有改动。
为了方便大家,所以贴出来,建议大家直接看Ogitor源码。

//暂时放着,代码没有测试过!




gre碰撞检测,精确到物体网格三角面
    我们课程的期末项目是做一个蚊子吸血的三维游戏。由于蚊子的体积很小,并且蚊子需要在三维场景中穿梭飞行。因此常规的模型包围盒检测便显得有些不足。例如,场景中有一个台灯,从模型的包围盒看,台灯是一个长方体,如果按照这样来做碰撞检测,那么蚊子便无法从台灯的长长的弧形躯干形成的拱桥洞中飞过去,尽管看起来蚊子确实没有撞到台灯。这在现实中是让人无法接受的。
    我曾经尝试了几种方法,一种是用从蚊子出发的指向各个方向的几条射线来检测碰撞,另一种是用一个球体包围蚊子,然后检测球体中的物体个数来检测碰撞。但最终都失败了,其本质的原因还是因为,这些碰撞只能检测到和模型包围盒的交点。
    看来,必须要寻找更好的解决方案。
    很幸运,我找到一个第三方的开源库,叫做  Minimal Ogre Collision  。可以在http://www.ogre3d.org/wiki/index.php/Minimal_Ogre_Collision上找到它。
    我决定把其中最核心的一段代码挑出来,详细解读。
//ray,求交射线;result,与模型面片的交点;target,相交物体;closest_distance,距离最近交点的距离;queryMask,碰撞检测掩码
bool CollisionTools::raycast(const Ogre::Ray &ray, Ogre::Vector3 &result,Ogre::MovableObject* &target,float &closest_distance, const Ogre::uint32 queryMask)
{
 target = NULL;
    // 测试射线是否有效
    if (mRaySceneQuery != NULL)
    {
        // 创建一个射线查询
  mRaySceneQuery->setRay(ray);
  mRaySceneQuery->setSortByDistance(true);//查询结果按距离排序
  mRaySceneQuery->setQueryMask(queryMask);//设置掩码
        // 执行查询
        if (mRaySceneQuery->execute().size() <= 0)
        {
            return (false);
        }
    }
    else
    {
        //LOG_ERROR << "Cannot raycast without RaySceneQuery instance" << ENDLOG;
        return (false);
    }
    // 注意哦,到这里我们已经得到一系列按照包围盒检测到的模型了.
    // 我们要找到第一个相交的物体.
    // 这就意味着我们不必去检测后面的物体了,这样大大节省了时间
    // 但是很遗憾,我们不得不遍历每一个物体的三角面,听起来是多么痛苦,必须得忍
    // 
    //初始化最小距离为-1
 closest_distance = -1.0f;
    Ogre::Vector3 closest_result;
    Ogre::RaySceneQueryResult &query_result = mRaySceneQuery->getLastResults();//取回刚才查询的结果,因为之前并没有保存
    for (size_t qr_idx = 0; qr_idx < query_result.size(); qr_idx++)
    {
        // 如果下一个碰撞物体比这个还远,当然要无视啦        
        if ((closest_distance >= 0.0f) &&
            (closest_distance < query_result[qr_idx].distance))
        {
            break;
        }
        // 我们只关心碰撞的东西是个物体
        if ((query_result[qr_idx].movable != NULL)  &&
            (query_result[qr_idx].movable->getMovableType().compare("Entity") == 0))
        {
            // 取得被碰撞的物体
            Ogre::MovableObject *pentity = static_cast<Ogre::MovableObject*>(query_result[qr_idx].movable);
            // 顶点是顶点,索引是索引,不着急,往下看
            size_t vertex_count;
            size_t index_count;
            Ogre::Vector3 *vertices;
            Ogre::uint32 *indices;
            // 下面的函数得到模型的详细信息
   GetMeshInformation(((Ogre::Entity*)pentity)->getMesh(), vertex_count, vertices, index_count, indices,
                              pentity->getParentNode()->_getDerivedPosition(),
                              pentity->getParentNode()->_getDerivedOrientation(),
                              pentity->getParentNode()->_getDerivedScale());
            // 再次注意了,下面求每一个三角面的交点,同样记录最近点
            bool new_closest_found = false;
            for (size_t i = 0; i < index_count; i += 3)
            {
                // 下面的函数求一条射线与三角面的交点,返回一个pair,《是否相交,距离交点距离》
                std::pair<bool, Ogre::Real> hit = Ogre::Math::intersects(ray, vertices[indices[i]],
                    vertices[indices[i+1]], vertices[indices[i+2]], true, false);//知道索引干嘛用的了吧,索引乃顶点之索引也
                // 如果碰撞,检查是否是当前最小距离
                if (hit.first)
                {
                    if ((closest_distance < 0.0f) ||
                        (hit.second < closest_distance))
                    {
                        // 如果是则更新
                        closest_distance = hit.second;
                        new_closest_found = true;
                    }
                }
            }
   // 释放刚才申请的内存,这种东西当然是在写申请的时候就要成对编写的了,正如同时写下{}
            delete[] vertices;
            delete[] indices;
            //如果找到新的点,不要忘了更新相应信息
            if (new_closest_found)
            {
                target = pentity;
                closest_result = ray.getPoint(closest_distance);//最近点的计算,简单的线性方程
            }
        }
    }
    // 返回结果
    if (closest_distance >= 0.0f)
    {
        // 成功了
        result = closest_result;
        return (true);
    }
    else
    {
        //失败了
        return (false);
    }

}

转载自:http://blog.csdn.net/miaoweiye/article/details/6607426

原创粉丝点击