内存对齐

来源:互联网 发布:基金模拟交易软件 编辑:程序博客网 时间:2024/06/08 07:13
1 //环境:vc6 + windows sp2
 2 //程序1
 3 #include <iostream>
 4 
 5 using namespace std;
 6 
 7 struct st1 
 8 {
 9     char a ;
10     int  b ;
11     short c ;
12 };
13 
14 struct st2
15 {
16     short c ;
17     char  a ;
18     int   b ;
19 };
20 
21 int main()
22 {
23     cout<<"sizeof(st1) is "<<sizeof(st1)<<endl;
24     cout<<"sizeof(st2) is "<<sizeof(st2)<<endl;
25     return 0 ;
26 }
27 

程序的输出结果为:

 sizeof(st1) is 12

        sizeof(st2) is 8 

 

问题出来了,这两个一样的结构体,为什么sizeof的时候大小不一样呢?

本文的主要目的就是解释明白这一问题。

 

内存对齐,正是因为内存对齐的影响,导致结果不同。

对于大多数的程序员来说,内存对齐基本上是透明的,这是编译器该干的活,编译器为程序中的每个数据单元安排在合适的位置上,从而导致了相同的变量,不同声明顺序的结构体大小的不同。

 那么编译器为什么要进行内存对齐呢?程序1中结构体按常理来理解sizeof(st1)和sizeof(st2)结果都应该是7,4(int) + 2(short) + 1(char) = 7 。经过内存对齐后,结构体的空间反而增大了。

在解释内存对齐的作用前,先来看下内存对齐的规则

<!--[if !supportLists]-->1、  <!--[endif]-->数据成员各自对齐:对于结构的各个成员,第一个成员位于偏移为0的位置,以后每个数据成员的偏移量必须是min(#pragma pack()指定的数,这个数据成员的自身长度) 的倍数。

<!--[if !supportLists]-->2、  <!--[endif]-->结构(或联合)本身也要进行对齐:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。

#pragma pack(n) 表示设置为n字节对齐。 VC6默认8字节对齐


什么是对齐,以及为什么要对齐:

 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。 对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。 对齐的实现 通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择时候目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。 但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。

摘自:http://blog.csdn.net/liupeng900605/article/details/7530010
原创粉丝点击