网络通信 Socket 编程

来源:互联网 发布:python连接db2数据库 编辑:程序博客网 时间:2024/05/16 00:53

转载地址:http://www.cnblogs.com/skynet/archive/2010/12/12/1903949.html

转载地址:http://www.blogjava.net/wxb_nudt/archive/2007/11/01/157623.html

代码转载地址:http://www.cppblog.com/bujiwu/archive/2009/01/11/71707.aspx

 

网络中进程之间通信

本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类:

  • 消息传递(管道、FIFO、消息队列)
  • 同步(互斥量、条件变量、读写锁、文件和写记录锁、信号量)
  • 共享内存(匿名的和具名的)
  • 远程过程调用(Solaris门和Sun RPC)

但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址可以唯一标识网络中的主机,而传输层的“协议+端口可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。

使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX  BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。

什么是 Socket

80年代初,美国政府的高级研究工程机构(ARPA)给加利福尼亚大学Berkeley分校提供了资金,让他们在UNIX操作系统下实现TCP/IP协议。在这个项目中,研究人员为TCP/IP网络通信开发了一个API(应用程序接口)。这个API称为Socket接口(套接字)。今天,SOCKET接口是TCP/IP网络最为通用的API,也是在INTERNET上进行应用开发最为通用的API。

90年代初,由Microsoft联合了其他几家公司共同制定了一套WINDOWS下的网络编程接口,即WindowsSockets规范。它是BerkeleySockets的重要扩充,主要是增加了一些异步函数,并增加了符合Windows消息驱动特性的网络事件异步选择机制。WINDOWSSOCKETS规范是一套开放的、支持多种协议的Windows下的网络编程接口。从1991年的1.0版到1995年的2.0.8版,经过不断完善并在Intel、Microsoft、Sun、SGI、Informix、Novell等公司的全力支持下,已成为Windows网络编程的事实上的标准。目前,在实际应用中的WINDOWSSOKCETS规范主要有1.1版和2.0版。两者的最重要区别是1.1版只支持TCP/IP协议,而2.0版可以支持多协议。2.0版有良好的向后兼容性,任何使用1.1版的源代码,二进制文件,应用程序都可以不加修改地在2.0规范下使用。

SOCKET实际在计算机中提供了一个通信端口,可以通过这个端口与任何一个具有SOCKET接口的计算机通信。应用程序在网络上传输,接收的信息都通过这个SOCKET接口来实现。在应用开发中就像使用文件句柄一样,可以对SOCKET句柄进行读,写操作。

TCP/IP协议和Socket

什么是TCP/IP、UDP

         TCP/IPTransmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,是一个工业标准的协议集,它是为广域网(WANs)设计的。
        UDPUser Data Protocol,用户数据报协议)是与TCP相对应的协议。它是属于TCP/IP协议族中的一种。
       这里有一张图,表明了这些协议的关系。

                                                                               


                                                                                                                                                图1

      TCP/IP协议族包括运输层、网络层、链路层。现在你知道TCP/IPUDP的关系了吧。

      在图1中,我们没有看到Socket的影子,那么它到底在哪里呢?还是用图来说话,一目了然。



2

Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

      前人已经给我们做了好多的事了,网络间的通信也就简单了许多,但毕竟还是有挺多工作要做的。以前听到Socket编程,觉得它是比较高深的编程知识,但是只要弄清Socket编程的工作原理,神秘的面纱也就揭开了。
       一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。   生活中的场景就解释了这工作原理,也许TCP/IP协议族就是诞生于生活中,这也不一定。

      

3

       先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束。

socket的基本操作

既然socket是“open—write/read—close”模式的一种实现,那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。

socket() 函数

int socket(int domain, int type, int protocol);

socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:

  • domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INETAF_INET6AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
  • type:指定socket类型。常用的socket类型有,SOCK_STREAMSOCK_DGRAMSOCK_RAWSOCK_PACKETSOCK_SEQPACKET等等(socket的类型有哪些?)。
  • protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCPIPPTOTO_UDPIPPROTO_SCTPIPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。

注意:并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。

当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()listen()时系统会自动随机分配一个端口。

bind()函数

正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INETAF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函数的三个参数分别为:

  • sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。
  • addr:一个conststruct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构根据地址创建socket时的地址协议族的不同而不同,如ipv4对应的是:
    struct sockaddr_in {    sa_family_t    sin_family; /* address family: AF_INET */    in_port_t      sin_port;   /* port in network byte order */    struct in_addr sin_addr;   /* internet address */};/* Internet address. */struct in_addr {    uint32_t       s_addr;     /* address in network byte order */};
    ipv6对应的是:
    struct sockaddr_in6 {     sa_family_t     sin6_family;   /* AF_INET6 */     in_port_t       sin6_port;     /* port number */     uint32_t        sin6_flowinfo; /* IPv6 flow information */     struct in6_addr sin6_addr;     /* IPv6 address */     uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ };struct in6_addr {     unsigned char   s6_addr[16];   /* IPv6 address */ };
    Unix域对应的是:
    #define UNIX_PATH_MAX    108struct sockaddr_un {     sa_family_t sun_family;               /* AF_UNIX */     char        sun_path[UNIX_PATH_MAX];  /* pathname */ };
  • addrlen:对应的是地址的长度。

通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

网络字节序与主机字节序

主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:

  a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。

  b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。

网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序,一个字节的数据没有顺序的问题了。

所以:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过血案!公司项目代码中由于存在这个问题,导致了很多莫名其妙的问题,所以请谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。

listen()、connect()函数

如果作为一个服务器,在调用socket()bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。

int listen(int sockfd, int backlog);int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。

connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。

accept()函数

TCP服务器端依次调用socket()bind()listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与返回客户的TCP连接。

注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

read()、write()等函数

万事具备只欠东风,至此服务器与客户已经建立好连接了。可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上可以把上面的其它函数都替换成这两个函数。它们的声明如下:

       #include <unistd.h>       ssize_t read(int fd, void *buf, size_t count);       ssize_t write(int fd, const void *buf, size_t count);       #include <sys/types.h>       #include <sys/socket.h>       ssize_t send(int sockfd, const void *buf, size_t len, int flags);       ssize_t recv(int sockfd, void *buf, size_t len, int flags);       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,                      const struct sockaddr *dest_addr, socklen_t addrlen);       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,                        struct sockaddr *src_addr, socklen_t *addrlen);       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。

write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。

其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。

close()函数

在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。

#include <unistd.h>int close(int fd);

close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。

注意:close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

 

socket中TCP的三次握手建立连接详解

我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:

  • 客户端向服务器发送一个SYN J
  • 服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1
  • 客户端再想服务器发一个确认ACK K+1

只有就完了三次握手,但是这个三次握手发生在socket的那几个函数中呢?请看下图:

image

图1、socket中发送的TCP三次握手

从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包,这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。

总结:客户端的connect在三次握手的第二个次返回,而服务器端的accept在三次握手的第三次返回。

socket中TCP的四次握手释放连接详解

上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。现在我们介绍socket中的四次握手释放连接的过程,请看下图:

image

图2、socket中发送的TCP四次握手

图示过程如下:

  • 某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;
  • 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
  • 一段时间之后,接收到文件结束符的应用进程调用close关闭它的socket。这导致它的TCP也发送一个FIN N;
  • 接收到这个FIN的源发送端TCP对它进行确认。

这样每个方向上都有一个FIN和ACK。

 

代码示例

服务器端代码:

#include<stdio.h>#include<stdlib.h>#include<string.h>#include<errno.h>#include<sys/types.h>#include<sys/socket.h>#include<netinet/in.h>#define MAXLINE 4096int main(int argc, char** argv){    int    listenfd, connfd;    struct sockaddr_in     servaddr;    char    buff[4096];    int     n;    if( (listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1 ){    printf("create socket error: %s(errno: %d)\n",strerror(errno),errno);    exit(0);    }    memset(&servaddr, 0, sizeof(servaddr));    servaddr.sin_family = AF_INET;    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);    servaddr.sin_port = htons(6666);    if( bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) == -1){    printf("bind socket error: %s(errno: %d)\n",strerror(errno),errno);    exit(0);    }    if( listen(listenfd, 10) == -1){    printf("listen socket error: %s(errno: %d)\n",strerror(errno),errno);    exit(0);    }    printf("======waiting for client's request======\n");    while(1){    if( (connfd = accept(listenfd, (struct sockaddr*)NULL, NULL)) == -1){        printf("accept socket error: %s(errno: %d)",strerror(errno),errno);        continue;    }    n = recv(connfd, buff, MAXLINE, 0);    buff[n] = '\0';    printf("recv msg from client: %s\n", buff);    close(connfd);    }    close(listenfd);}


 客户端代码:

#include<stdio.h>#include<stdlib.h>#include<string.h>#include<errno.h>#include<sys/types.h>#include<sys/socket.h>#include<netinet/in.h>#define MAXLINE 4096int main(int argc, char** argv){    int    sockfd, n;    char    recvline[4096], sendline[4096];    struct sockaddr_in    servaddr;    if( argc != 2){    printf("usage: ./client <ipaddress>\n");    exit(0);    }    if( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0){    printf("create socket error: %s(errno: %d)\n", strerror(errno),errno);    exit(0);    }    memset(&servaddr, 0, sizeof(servaddr));    servaddr.sin_family = AF_INET;    servaddr.sin_port = htons(6666);    if( inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0){    printf("inet_pton error for %s\n",argv[1]);    exit(0);    }    if( connect(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < 0){    printf("connect error: %s(errno: %d)\n",strerror(errno),errno);    exit(0);    }    printf("send msg to server: \n");    fgets(sendline, 4096, stdin);    if( send(sockfd, sendline, strlen(sendline), 0) < 0)    {    printf("send msg error: %s(errno: %d)\n", strerror(errno), errno);    exit(0);    }    close(sockfd);    exit(0);}


 一个UDP发送程序的步骤如下:

1.        用WSAStartup函数初始化Socket环境;

2.        用socket函数创建一个套接字;

3.        用setsockopt函数设置套接字的属性,例如设置为广播类型;很多时候该步骤可以省略;

4.        创建一个sockaddr_in,并指定其IP地址和端口号;

5.        用sendto函数向指定地址发送数据,这里的目标地址就是广播地址;注意这里不需要绑定,即使绑定了,其地址也会被sendto中的参数覆盖;若使用send函数则会出错,因为send是面向连接的,而UDP是非连接的,只能使用sendto发送数据;

6.        用closesocket函数关闭套接字;

7.        用WSACleanup函数关闭Socket环境。

那么,与之类似,一个UDP接收程序的步骤如下,注意接收方一定要bind套接字:

1.        用WSAStartup函数初始化Socket环境;

2.        用socket函数创建一个套接字;

3.        用setsockopt函数设置套接字的属性,例如设置为广播类型;

4.        创建一个sockaddr_in,并指定其IP地址和端口号;

5.        用bind函数将套接字与接收的地址绑定起来,然后调用recvfrom函数或者recv接收数据; 注意这里一定要绑定,因为接收报文的套接字必须在网络上有一个绑定的名称才能保证正确接收数据;

6.        用closesocket函数关闭套接字;

7.        用WSACleanup函数关闭Socket环境。

 

TCP与UDP最大的不同之处在于TCP是一个面向连接的协议,在进行数据收发之前TCP必须进行连接,并且在收发的时候必须保持该连接。

发送方的步骤如下(省略了Socket环境的初始化、关闭等内容):

1.        用socket函数创建一个套接字sock;

2.        用bind将sock绑定到本地地址;

3.        用listen侦听sock套接字;

4.        用accept函数接收客户方的连接,返回客户方套接字clientSocket;

5.        在客户方套接字clientSocket上使用send发送数据;

6.        用closesocket函数关闭套接字sock和clientSocket;

而接收方的步骤如下:

1.        用socket函数创建一个套接字sock;

2.        创建一个指向服务方的远程地址;

3.        用connect将sock连接到服务方,使用远程地址;

4.        在套接字上使用recv接收数据;

5.        用closesocket函数关闭套接字sock;

值得注意的是,在服务方有两个地址,一个是本地地址myaddr,另一个是目标地址addrto。本地地址myaddr用来和本地套接字sock绑定,目标地址被sock用来accept客户方套接字clientSocket。这样sock和clientSocket连接成功,这两个地址也连接上了。在服务方使用clientSocket发送数据,则会从本地地址传送到目标地址。

在客户方只有一个地址,即来源地址addrfrom。这个地址被用来connect远程的服务方套接字,connect成功则本地套接字与远程的来源地址连接了,因此可以使用该套接字接收远程数据。其实这时客户方套接字已经被隐性的绑定了本地地址,所以不需要显式调用bind函数,即使调用也不会影像结果。

 

详细代码

Windows下Socket编程主要包括以下几部分:
服务端
   1、初始化Windows Socket库。
   2、创建Socket。
   3、绑定Socket。
   4、监听。
   5、Accept。
   6、接收、发送数据。

客户端
   1、初始化Windows Socket库。
   2、创建Socket。
   3、连接Socket。
   4、接收、发送数据。

服务端每接收到一个客户端的Socket,则创建一个线程。满足一个服务端连接多个客户端。

 //Server.cpp  2 #include <iostream>  3 #include <Windows.h>  4   5 using namespace std;  6   7 #define  PORT 4000  8 #define  IP_ADDRESS "192.168.1.145"  9  10 DWORD WINAPI ClientThread(LPVOID lpParameter) 11 { 12     SOCKET CientSocket = (SOCKET)lpParameter; 13     int Ret = 0; 14     char RecvBuffer[MAX_PATH]; 15  16     while ( true ) 17     { 18         memset(RecvBuffer, 0x00, sizeof(RecvBuffer)); 19         Ret = recv(CientSocket, RecvBuffer, MAX_PATH, 0); 20         if ( Ret == 0 || Ret == SOCKET_ERROR )  21         { 22             cout<<"客户端退出!"<<endl; 23             break; 24         } 25         cout<<"接收到客户信息为:"<<RecvBuffer<<endl; 26     } 27  28     return 0; 29 } 30  31 int main(int argc, char* argv[]) 32 { 33     WSADATA  Ws; 34     SOCKET ServerSocket, CientSocket; 35     struct sockaddr_in LocalAddr, ClientAddr; 36     int Ret = 0; 37     int AddrLen = 0; 38     HANDLE hThread = NULL; 39  40     //Init Windows Socket 41     if ( WSAStartup(MAKEWORD(2,2), &Ws) != 0 ) 42     { 43         cout<<"Init Windows Socket Failed::"<<GetLastError()<<endl; 44         return -1; 45     } 46      47     //Create Socket 48     ServerSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 49     if ( ServerSocket == INVALID_SOCKET ) 50     { 51         cout<<"Create Socket Failed::"<<GetLastError()<<endl; 52         return -1; 53     } 54  55     LocalAddr.sin_family = AF_INET; 56     LocalAddr.sin_addr.s_addr = inet_addr(IP_ADDRESS); 57     LocalAddr.sin_port = htons(PORT); 58     memset(LocalAddr.sin_zero, 0x00, 8); 59  60     //Bind Socket 61     Ret = bind(ServerSocket, (struct sockaddr*)&LocalAddr, sizeof(LocalAddr)); 62     if ( Ret != 0 ) 63     { 64         cout<<"Bind Socket Failed::"<<GetLastError()<<endl; 65         return -1; 66     } 67  68     Ret = listen(ServerSocket, 10); 69     if ( Ret != 0 ) 70     { 71         cout<<"listen Socket Failed::"<<GetLastError()<<endl; 72         return -1; 73     } 74  75     cout<<"服务端已经启动"<<endl; 76  77     while ( true ) 78     { 79         AddrLen = sizeof(ClientAddr); 80         CientSocket = accept(ServerSocket, (struct sockaddr*)&ClientAddr, &AddrLen); 81         if ( CientSocket == INVALID_SOCKET ) 82         { 83             cout<<"Accept Failed::"<<GetLastError()<<endl; 84             break; 85         } 86  87         cout<<"客户端连接::"<<inet_ntoa(ClientAddr.sin_addr)<<":"<<ClientAddr.sin_port<<endl; 88          89         hThread = CreateThread(NULL, 0, ClientThread, (LPVOID)CientSocket, 0, NULL); 90         if ( hThread == NULL ) 91         { 92             cout<<"Create Thread Failed!"<<endl; 93             break; 94         } 95  96         CloseHandle(hThread); 97     } 98  99     closesocket(ServerSocket);100     closesocket(CientSocket);101     WSACleanup();102 103     return 0;104 }
//Client.cpp 2 #include <iostream> 3 #include <Windows.h> 4  5 using namespace std; 6  7 #define  PORT 4000 8 #define  IP_ADDRESS "192.168.1.145" 9 10 11 int main(int argc, char* argv[])12 {13     WSADATA  Ws;14     SOCKET CientSocket;15     struct sockaddr_in ServerAddr;16     int Ret = 0;17     int AddrLen = 0;18     HANDLE hThread = NULL;19     char SendBuffer[MAX_PATH];20 21     //Init Windows Socket22     if ( WSAStartup(MAKEWORD(2,2), &Ws) != 0 )23     {24         cout<<"Init Windows Socket Failed::"<<GetLastError()<<endl;25         return -1;26     }27 28     //Create Socket29     CientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);30     if ( CientSocket == INVALID_SOCKET )31     {32         cout<<"Create Socket Failed::"<<GetLastError()<<endl;33         return -1;34     }35 36     ServerAddr.sin_family = AF_INET;37     ServerAddr.sin_addr.s_addr = inet_addr(IP_ADDRESS);38     ServerAddr.sin_port = htons(PORT);39     memset(ServerAddr.sin_zero, 0x00, 8);40 41     Ret = connect(CientSocket,(struct sockaddr*)&ServerAddr, sizeof(ServerAddr));42     if ( Ret == SOCKET_ERROR )43     {44         cout<<"Connect Error::"<<GetLastError()<<endl;45         return -1;46     }47     else48     {49         cout<<"连接成功!"<<endl;50     }51 52     while ( true )53     {54         cin.getline(SendBuffer, sizeof(SendBuffer));55         Ret = send(CientSocket, SendBuffer, (int)strlen(SendBuffer), 0);56         if ( Ret == SOCKET_ERROR )57         {58             cout<<"Send Info Error::"<<GetLastError()<<endl;59             break;60         }61     }62     63     closesocket(CientSocket);64     WSACleanup();65 66     return 0;67 }

 

原创粉丝点击