计算几何模板(转自Archibaldyangfan)

来源:互联网 发布:php 魔术方法 编辑:程序博客网 时间:2024/06/07 22:03

/** * 二维ACM计算几何模板 * 注意变量类型更改和EPS * #include <cmath> * #include <cstdio> * By OWenT */ const double eps = 1e-8;const double pi = std::acos(-1.0);//点class point{public:    double x, y;    point(){};    point(double x, double y):x(x),y(y){};     static int xmult(const point &ps, const point &pe, const point &po)    {        return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);    }     //相对原点的差乘结果,参数:点[_Off]    //即由原点和这两个点组成的平行四边形面积    double operator *(const point &_Off) const    {        return x * _Off.y - y * _Off.x;    }    //相对偏移    point operator - (const point &_Off) const    {        return point(x - _Off.x, y - _Off.y);    }    //点位置相同(double类型)    bool operator == (const point &_Off) const    {        return std::fabs(_Off.x - x) < eps && std::fabs(_Off.y - y) < eps;    }    //点位置不同(double类型)    bool operator != (const point &_Off) const    {        return ((*this) == _Off) == false;    }    //两点间距离的平方    double dis2(const point &_Off) const    {        return (x - _Off.x) * (x - _Off.x) + (y - _Off.y) * (y - _Off.y);    }    //两点间距离    double dis(const point &_Off) const    {        return std::sqrt((x - _Off.x) * (x - _Off.x) + (y - _Off.y) * (y - _Off.y));    }}; //两点表示的向量class pVector{public:    point s, e;//两点表示,起点[s],终点[e]    double a, b, c;//一般式,ax+by+c=0     pVector(){}    pVector(const point &s, const point &e):s(s),e(e){}     //向量与点的叉乘,参数:点[_Off]    //[点相对向量位置判断]    double operator *(const point &_Off) const    {        return (_Off.y - s.y) * (e.x - s.x) - (_Off.x - s.x) * (e.y - s.y);    }    //向量与向量的叉乘,参数:向量[_Off]    double operator *(const pVector &_Off) const    {        return (e.x - s.x) * (_Off.e.y - _Off.s.y) - (e.y - s.y) * (_Off.e.x - _Off.s.x);    }    //从两点表示转换为一般表示    bool pton()    {        a = s.y - e.y;        b = e.x - s.x;        c = s.x * e.y - s.y * e.x;        return true;    }     //-----------点和直线(向量)-----------    //点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)    //参数:点[_Off],向量[_Ori]    friend bool operator<(const point &_Off, const pVector &_Ori)    {        return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)            < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);    }     //点在直线上,参数:点[_Off]    bool lhas(const point &_Off) const    {        return std::fabs((*this) * _Off) < eps;    }    //点在线段上,参数:点[_Off]    bool shas(const point &_Off) const    {        return lhas(_Off)            && _Off.x - std::min(s.x, e.x) > -eps && _Off.x - std::max(s.x, e.x) < eps            && _Off.y - std::min(s.y, e.y) > -eps && _Off.y - std::max(s.y, e.y) < eps;    }     //点到直线/线段的距离    //参数: 点[_Off], 是否是线段[isSegment](默认为直线)    double dis(const point &_Off, bool isSegment = false)    {        //化为一般式        pton();         //到直线垂足的距离        double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);         //如果是线段判断垂足        if(isSegment)        {            double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);            double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);            double xb = std::max(s.x, e.x);            double yb = std::max(s.y, e.y);            double xs = s.x + e.x - xb;            double ys = s.y + e.y - yb;            if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)                td = std::min(_Off.dis(s), _Off.dis(e));        }         return fabs(td);    }     //关于直线对称的点    point mirror(const point &_Off) const    {        //注意先转为一般式        point ret;        double d = a * a + b * b;        ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;        ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;        return ret;    }    //计算两点的中垂线    static pVector ppline(const point &_a, const point &_b)    {        pVector ret;        ret.s.x = (_a.x + _b.x) / 2;        ret.s.y = (_a.y + _b.y) / 2;        //一般式        ret.a = _b.x - _a.x;        ret.b = _b.y - _a.y;        ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;        //两点式        if(std::fabs(ret.a) > eps)        {            ret.e.y = 0.0;            ret.e.x = - ret.c / ret.a;            if(ret.e == ret. s)            {                ret.e.y = 1e10;                ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;            }        }        else        {            ret.e.x = 0.0;            ret.e.y = - ret.c / ret.b;            if(ret.e == ret. s)            {                ret.e.x = 1e10;                ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;            }        }        return ret;    }     //------------直线和直线(向量)-------------    //直线重合,参数:直线向量[_Off]    bool equal(const pVector &_Off) const    {        return lhas(_Off.e) && lhas(_Off.s);    }    //直线平行,参数:直线向量[_Off]    bool parallel(const pVector &_Off) const    {        return std::fabs((*this) * _Off) < eps;    }    //两直线交点,参数:目标直线[_Off]    point crossLPt(pVector _Off)    {        //注意先判断平行和重合        point ret = s;        double t = ((s.x - _Off.s.x) * (_Off.s.y - _Off.e.y) - (s.y - _Off.s.y) * (_Off.s.x - _Off.e.x))                / ((s.x - e.x) * (_Off.s.y - _Off.e.y) - (s.y - e.y) * (_Off.s.x - _Off.e.x));        ret.x += (e.x - s.x) * t;        ret.y += (e.y - s.y) * t;        return ret;    }     //------------线段和直线(向量)----------    //线段和直线交    //参数:线段[_Off]    bool crossSL(const pVector &_Off) const    {        double rs = (*this) * _Off.s;        double re = (*this) * _Off.e;        return rs * re < eps;    }     //------------线段和线段(向量)----------    //判断线段是否相交(注意添加eps),参数:线段[_Off]    bool isCrossSS(const pVector &_Off) const    {        //1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交        //2.跨立试验(等于0时端点重合)        return (            (std::max(s.x, e.x) >= std::min(_Off.s.x, _Off.e.x)) &&            (std::max(_Off.s.x, _Off.e.x) >= std::min(s.x, e.x)) &&            (std::max(s.y, e.y) >= std::min(_Off.s.y, _Off.e.y)) &&            (std::max(_Off.s.y, _Off.e.y) >= std::min(s.y, e.y)) &&            ((pVector(_Off.s, s) * _Off) * (_Off * pVector(_Off.s, e)) >= 0.0) &&            ((pVector(s, _Off.s) * (*this)) * ((*this) * pVector(s, _Off.e)) >= 0.0)            );    }}; class polygon{public:    const static long maxpn = 100;    point pt[maxpn];//点(顺时针或逆时针)    long n;//点的个数     point& operator[](int _p)    {        return pt[_p];    }     //求多边形面积,多边形内点必须顺时针或逆时针    double area() const    {        double ans = 0.0;        int i;        for(i = 0; i < n; i ++)        {            int nt = (i + 1) % n;            ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;        }        return std::fabs(ans / 2.0);    }    //求多边形重心,多边形内点必须顺时针或逆时针    point gravity() const    {        point ans;        ans.x = ans.y = 0.0;        int i;        double area = 0.0;        for(i = 0; i < n; i ++)        {            int nt = (i + 1) % n;            double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;            area += tp;            ans.x += tp * (pt[i].x + pt[nt].x);            ans.y += tp * (pt[i].y + pt[nt].y);        }        ans.x /= 3 * area;        ans.y /= 3 * area;        return ans;    }    //判断点在凸多边形内,参数:点[_Off]    bool chas(const point &_Off) const    {        double tp = 0, np;        int i;        for(i = 0; i < n; i ++)        {            np = pVector(pt[i], pt[(i + 1) % n]) * _Off;            if(tp * np < -eps)                return false;            tp = (std::fabs(np) > eps)?np: tp;        }        return true;    }    //判断点是否在任意多边形内[射线法],O(n)    bool ahas(const point &_Off) const    {        int ret = 0;        double infv = 1e-10;//坐标系最大范围        pVector l = pVector(_Off, point( -infv ,_Off.y));        for(int i = 0; i < n; i ++)        {            pVector ln = pVector(pt[i], pt[(i + 1) % n]);            if(fabs(ln.s.y - ln.e.y) > eps)            {                point tp = (ln.s.y > ln.e.y)? ln.s: ln.e;                if(fabs(tp.y - _Off.y) < eps && tp.x < _Off.x + eps)                    ret ++;            }            else if(ln.isCrossSS(l))                ret ++;        }        return (ret % 2 == 1);    }    //凸多边形被直线分割,参数:直线[_Off]    polygon split(pVector _Off)    {        //注意确保多边形能被分割        polygon ret;        point spt[2];        double tp = 0.0, np;        bool flag = true;        int i, pn = 0, spn = 0;        for(i = 0; i < n; i ++)        {            if(flag)                pt[pn ++] = pt[i];            else                ret.pt[ret.n ++] = pt[i];            np = _Off * pt[(i + 1) % n];            if(tp * np < -eps)            {                flag = !flag;                spt[spn ++] = _Off.crossLPt(pVector(pt[i], pt[(i + 1) % n]));            }            tp = (std::fabs(np) > eps)?np: tp;        }        ret.pt[ret.n ++] = spt[0];        ret.pt[ret.n ++] = spt[1];        n = pn;        return ret;    }     //-------------凸包-------------    //Graham扫描法,复杂度O(nlg(n)),结果为逆时针    //#include <algorithm>    static bool graham_cmp(const point &l, const point &r)//凸包排序函数    {        return l.y < r.y || (l.y == r.y && l.x < r.x);    }    polygon& graham(point _p[], int _n)    {        int i, len;        std::sort(_p, _p + _n, polygon::graham_cmp);        n = 1;        pt[0] = _p[0], pt[1] = _p[1];        for(i = 2; i < _n; i ++)        {            while(n && point::xmult(_p[i], pt[n], pt[n - 1]) >= 0)                n --;            pt[++ n] = _p[i];        }        len = n;        pt[++ n] = _p[_n - 2];        for(i = _n - 3; i >= 0; i --)        {            while(n != len && point::xmult(_p[i], pt[n], pt[n - 1]) >= 0)                n --;            pt[++ n] = _p[i];        }        return (*this);    }     //凸包旋转卡壳(注意点必须顺时针或逆时针排列)    //返回值凸包直径的平方(最远两点距离的平方)    double rotating_calipers()    {        int i = 1;        double ret = 0.0;        pt[n] = pt[0];        for(int j = 0; j < n; j ++)        {            while(fabs(point::xmult(pt[j], pt[j + 1], pt[i + 1])) > fabs(point::xmult(pt[j], pt[j + 1], pt[i])) + eps)                i = (i + 1) % n;            //pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点            ret = std::max(ret, std::max(pt[i].dis(pt[j]), pt[i + 1].dis(pt[j + 1])));        }        return ret;    }     //凸包旋转卡壳(注意点必须逆时针排列)    //返回值两凸包的最短距离    double rotating_calipers(polygon &_Off)    {        int i = 0;        double ret = 1e10;//inf        pt[n] = pt[0];        _Off.pt[_Off.n] = _Off.pt[0];        //注意凸包必须逆时针排列且pt[0]是左下角点的位置        while(_Off.pt[i + 1].y > _Off.pt[i].y)            i = (i + 1) % _Off.n;        for(int j = 0; j < n; j ++)        {            double tp;            //逆时针时为 >,顺时针则相反            while((tp = point::xmult(pt[j], pt[j + 1], _Off.pt[i + 1]) - point::xmult( pt[j], pt[j + 1], _Off.pt[i])) > eps)                i = (i + 1) % _Off.n;            //(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段            ret = std::min(ret, pVector(pt[j], pt[j + 1]).dis(_Off.pt[i], true));            ret = std::min(ret, pVector(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true));            if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断            {                ret = std::min(ret, pVector(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true));                ret = std::min(ret, pVector(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true));            }        }        return ret;    }     //-----------半平面交-------------    //复杂度:O(nlog2(n))    //#include <algorithm>    //半平面计算极角函数[如果考虑效率可以用成员变量记录]    static double hpc_pa(const pVector &_Off)    {        return atan2(_Off.e.y - _Off.s.y, _Off.e.x - _Off.s.x);    }    //半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边]    static bool hpc_cmp(const pVector &l, const pVector &r)    {        double lp = hpc_pa(l), rp = hpc_pa(r);        if(fabs(lp - rp) > eps)            return lp < rp;        return point::xmult(l.s, r.e, r.s) < 0.0;    }    //用于计算的双端队列    pVector dequeue[maxpn];    //获取半平面交的多边形(多边形的核)    //参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)    //函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)    polygon& halfPanelCross(pVector _Off[], int ln)    {        int i, tn;        n = 0;        std::sort(_Off, _Off + ln, hpc_cmp);        //平面在向量左边的筛选        for(i = tn = 1; i < ln; i ++)            if(fabs(hpc_pa(_Off[i]) - hpc_pa(_Off[i - 1])) > eps)                _Off[tn ++] = _Off[i];        ln = tn;        int bot = 0, top = 1;        dequeue[0] = _Off[0];        dequeue[1] = _Off[1];        for(i = 2; i < ln; i ++)        {            if(dequeue[top].parallel(dequeue[top - 1]) ||                dequeue[bot].parallel(dequeue[bot + 1]))                return (*this);            while(bot < top &&                point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), _Off[i].e, _Off[i].s) > eps)                top --;            while(bot < top &&                point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), _Off[i].e, _Off[i].s) > eps)                bot ++;            dequeue[++ top] = _Off[i];        }         while(bot < top &&            point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), dequeue[bot].e, dequeue[bot].s) > eps)            top --;        while(bot < top &&            point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), dequeue[top].e, dequeue[top].s) > eps)            bot ++;        //计算交点(注意不同直线形成的交点可能重合)        if(top <= bot + 1)            return (*this);        for(i = bot; i < top; i ++)            pt[n ++] = dequeue[i].crossLPt(dequeue[i + 1]);        if(bot < top + 1)            pt[n ++] = dequeue[bot].crossLPt(dequeue[top]);        return (*this);    }};class circle{public:    point c;//圆心    double r;//半径    double db, de;//圆弧度数起点, 圆弧度数终点(逆时针0-360)     //-------圆---------     //判断圆在多边形内    bool inside(const polygon &_Off) const    {        if(_Off.ahas(c) == false)            return false;        for(int i = 0; i < _Off.n; i ++)        {            pVector l = pVector(_Off.pt[i], _Off.pt[(i + 1) % _Off.n]);            if(l.dis(c, true) < r - eps)                return false;        }        return true;    }     //判断多边形在圆内(线段和折线类似)    bool has(const polygon &_Off) const    {        for(int i = 0; i < _Off.n; i ++)            if(_Off.pt[i].dis2(c) > r * r - eps)                return false;        return true;    }     //-------圆弧-------    //圆被其他圆截得的圆弧,参数:圆[_Off]    circle operator-(circle &_Off) const    {        //注意圆必须相交,圆心不能重合        double d2 = c.dis2(_Off.c);        double d = c.dis(_Off.c);        double ans = std::acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));        point py = _Off.c - c;        double oans = std::atan2(py.y, py.x);        circle res;        res.c = c;        res.r = r;        res.db = oans + ans;        res.de = oans - ans + 2 * pi;        return res;    }    //圆被其他圆截得的圆弧,参数:圆[_Off]    circle operator+(circle &_Off) const    {        //注意圆必须相交,圆心不能重合        double d2 = c.dis2(_Off.c);        double d = c.dis(_Off.c);        double ans = std::acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));        point py = _Off.c - c;        double oans = std::atan2(py.y, py.x);        circle res;        res.c = c;        res.r = r;        res.db = oans - ans;        res.de = oans + ans;        return res;    }     //过圆外一点的两条切线    //参数:点[_Off](必须在圆外),返回:两条切线(切线的s点为_Off,e点为切点)    std::pair<pVector, pVector>  tangent(const point &_Off) const    {        double d = c.dis(_Off);        //计算角度偏移的方式        double angp = std::acos(r / d), ango = std::atan2(_Off.y - c.y, _Off.x - c.x);        point pl = point(c.x + r * std::cos(ango + angp), c.y + r * std::sin(ango + angp)),            pr = point(c.x + r * std::cos(ango - angp), c.y + r * std::sin(ango - angp));        return std::make_pair(pVector(_Off, pl), pVector(_Off, pr));    }     //计算直线和圆的两个交点    //参数:直线[_Off](两点式),返回两个交点,注意直线必须和圆有两个交点    std::pair<point, point> cross(pVector _Off) const    {        _Off.pton();        //到直线垂足的距离        double td = fabs(_Off.a * c.x + _Off.b * c.y + _Off.c) / sqrt(_Off.a * _Off.a + _Off.b * _Off.b);         //计算垂足坐标        double xp = (_Off.b * _Off.b * c.x - _Off.a * _Off.b * c.y - _Off.a * _Off.c) / ( _Off.a * _Off.a + _Off.b * _Off.b);        double yp = (- _Off.a * _Off.b * c.x + _Off.a * _Off.a * c.y - _Off.b * _Off.c) / (_Off.a * _Off.a + _Off.b * _Off.b);         double ango = std::atan2(yp - c.y, xp - c.x);        double angp = std::acos(td / r);         return std::make_pair(point(c.x + r * std::cos(ango + angp), c.y + r * std::sin(ango + angp)),            point(c.x + r * std::cos(ango - angp), c.y + r * std::sin(ango - angp)));    }}; class triangle{public:    point a, b, c;//顶点    triangle(){}    triangle(point a, point b, point c): a(a), b(b), c(c){}     //计算三角形面积    double area()    {        return fabs(point::xmult(a, b, c)) / 2.0;    }     //计算三角形外心    //返回:外接圆圆心    point circumcenter()    {        pVector u,v;        u.s.x = (a.x + b.x) / 2;        u.s.y = (a.y + b.y) / 2;        u.e.x = u.s.x - a.y + b.y;        u.e.y = u.s.y + a.x - b.x;        v.s.x = (a.x + c.x) / 2;        v.s.y = (a.y + c.y) / 2;        v.e.x = v.s.x - a.y + c.y;        v.e.y = v.s.y + a.x - c.x;        return u.crossLPt(v);    }     //计算三角形内心    //返回:内接圆圆心    point incenter()    {        pVector u, v;        double m, n;        u.s = a;        m = atan2(b.y - a.y, b.x - a.x);        n = atan2(c.y - a.y, c.x - a.x);        u.e.x = u.s.x + cos((m + n) / 2);        u.e.y = u.s.y + sin((m + n) / 2);        v.s = b;        m = atan2(a.y - b.y, a.x - b.x);        n = atan2(c.y - b.y, c.x - b.x);        v.e.x = v.s.x + cos((m + n) / 2);        v.e.y = v.s.y + sin((m + n) / 2);        return u.crossLPt(v);    }     //计算三角形垂心    //返回:高的交点    point perpencenter()    {        pVector u,v;        u.s = c;        u.e.x = u.s.x - a.y + b.y;        u.e.y = u.s.y + a.x - b.x;        v.s = b;        v.e.x = v.s.x - a.y + c.y;        v.e.y = v.s.y + a.x - c.x;        return u.crossLPt(v);    }     //计算三角形重心    //返回:重心    //到三角形三顶点距离的平方和最小的点    //三角形内到三边距离之积最大的点    point barycenter()    {        pVector u,v;        u.s.x = (a.x + b.x) / 2;        u.s.y = (a.y + b.y) / 2;        u.e = c;        v.s.x = (a.x + c.x) / 2;        v.s.y = (a.y + c.y) / 2;        v.e = b;        return u.crossLPt(v);    }     //计算三角形费马点    //返回:到三角形三顶点距离之和最小的点    point fermentpoint()    {        point u, v;        double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);        int i, j, k;        u.x = (a.x + b.x + c.x) / 3;        u.y = (a.y + b.y + c.y) / 3;        while (step > eps)        {            for (k = 0; k < 10; step /= 2, k ++)            {                for (i = -1; i <= 1; i ++)                {                    for (j =- 1; j <= 1; j ++)                    {                        v.x = u.x + step * i;                        v.y = u.y + step * j;                        if (u.dis(a) + u.dis(b) + u.dis(c) > v.dis(a) + v.dis(b) + v.dis(c))                            u = v;                    }                }            }        }        return u;    }};

三角形外心
#define PI 3.141592653589793struct point{    double x;    double y;};struct Line{    point a;    point b;};point intersection(Line u,Line v){    point res=u.a;    double k=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));    res.x+=(u.b.x-u.a.x)*k;    res.y+=(u.b.y-u.a.y)*k;    return res;}point circumcenter(point a,point b,point c){    Line u,v;    u.a.x=(a.x+b.x)/2;    u.a.y=(a.y+b.y)/2;    u.b.x=u.a.x-a.y+b.y;    u.b.y=u.a.y+a.x-b.x;    v.a.x=(a.x+c.x)/2;    v.a.y=(a.y+c.y)/2;    v.b.x=v.a.x-a.y+c.y;    v.b.y=v.a.y+a.x-c.x;    return intersection(u,v);}double dis(point a,point b){    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}