hdu 4746 Mophues

来源:互联网 发布:c语言线程函数 编辑:程序博客网 时间:2024/06/07 00:18

Mophues

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others)
Total Submission(s): 290    Accepted Submission(s): 102


Problem Description
As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers:
    C = p1×p2× p3× ... × pk
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
    24 = 2 × 2 × 2 × 3
    here, p1 = p2 = p3 = 2, p4 = 3, k = 4

Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.

Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").

Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.
 

Input
The first line of input is an integer Q meaning that there are Q test cases.
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×105. Q <=5000).
 

Output
For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.
 

Sample Input
210 10 010 10 1
 

Sample Output
6393
 

Source
2013 ACM/ICPC Asia Regional Hangzhou Online
 

Recommend
liuyiding

比赛的时候真是太弱了,这题没做出来,后来看了好多关于gcd(x,y)求(x,y)得对数的统计方法,才知道这个玩意该怎么做。

关于题意:定义F(n)为一个数n的素因子的个数,如12=2*2*3,则F(12)=3,特别的F(1)=0。

然后有10^5个询问,问满足F(gcd(i,j))<=P,(1<=x<=n,1<=y<=m)的(x,y)有多少对?

对于不会数论的人这题真的好难,对于我这种学过数论但是个不会莫比乌斯的弱渣来说更是好难。。。

假设我们枚举gcd(i,j)的值d,即gcd(i,j)=d,如果F(d)<=P,那么我们统计gcd(x,y)=d,(1<=x<=n,1<=y<=m)的(x,y)的对数,再把所有累加起来就是答案,当然了,如果我们可以O(1)得到[gcd(x,y)=d,(1<=x<=n,1<=y<=m)的(x,y)的对数]的话这个算法也是可以接受的,但实际上没有O(1)的方法。。。但我们还是要考虑下这个方法

我们考虑怎样求gcd(x,y)=d,这个问题实际上等价于求gcd(x,y)=1,(1<=x<=[n/d],1<=y<=[m/d])的(x,y)的对数。

然后是怎样求gcd(x,y)=1,

我们设f(d)为gcd(x,y)=d的个数,g(d)为gcd(x,y)是d的倍数的个数,这个值很好计算:g(d)=[n/d]*[m/d]

那么显然有g(d)=f(d)+f(2d)+f(3d)+....

然后由莫比乌斯反演,我们知道f(d)=g(d)*u(1)+g(2*d)*u(2)+g(3*d)*u(3)+....

考虑结果ans,ans为所有f(d)且F(d)<=P的和,

我们枚举1<=i<=n,如果i是某个d的倍数且F(d)<=P,那么ans+=g(i)*u(i/d)=[n/i]*[m/i]*u(i/d)。那么这个怎么计算能更快一点?

我们设G(i)为容斥因子:G(i)=sum{u(i/d) | F(d)<=P} 这个值可以nlogn预处理出来,然后我们只需要ans+=G(i)*[n/i]*[m/i]即可

这样的话总的复杂度为O(n*q)还是会T的样子

然后我们注意到[n/i]*[m/i]在一定的范围内是不变的,这个范围是[i,min(n/(n/i),m/(m/i)],这样我们可以预处理出G(i)的前缀和,然后加快运算(复杂度网上说是sqrt(n)的。。。)

这样总的复杂度是O(q*sqrt(n)+nlog(n))大概这样,然后就可以过了。。。呵呵呵

#include<cstdio>#include<cstring>#include<iostream>#include<vector>using namespace std;const int maxn = 500100;typedef long long ll;int mu[maxn],sum[maxn],num[maxn];ll cnt[maxn][19];bool flag[maxn];vector<int>prime;void init(){    mu[1]=1;    for(int i=2;i<maxn;i++){        if(!flag[i]){            prime.push_back(i);            mu[i]=-1;            num[i]=1;        }        for(int j=0;j<prime.size()&&i*prime[j]<maxn;j++){            flag[i*prime[j]]=true;            num[i*prime[j]]=num[i]+1;            if(i%prime[j])mu[i*prime[j]]=-mu[i];            else {mu[i*prime[j]]=0;break;}        }    }    for(int i=1;i<maxn;i++){        for(int j=i;j<maxn;j+=i){            cnt[j][num[i]]+=mu[j/i];        }    }    for(int i=0;i<maxn;i++){        for(int j=1;j<19;j++){            cnt[i][j]+=cnt[i][j-1];        }    }    for(int i=1;i<maxn;i++){        for(int j=0;j<19;j++){            cnt[i][j]+=cnt[i-1][j];        }    }}int main(){    init();    int q;    scanf("%d",&q);    while(q--){        int n,m,k;        scanf("%d%d%d",&n,&m,&k);        k=min(k,18);        ll ans=0;        if(n>m)swap(n,m);        for(int i=1,last=i;i<=n;i=last+1){            last=min(n/(n/i),m/(m/i));            ans+=(ll)(cnt[last][k]-cnt[i-1][k])*(n/i)*(m/i);        }        //printf("%lld\n",ans);        printf("%I64d\n",ans);    }}