Vector(向量容器)

来源:互联网 发布:快捷混合矩阵 编辑:程序博客网 时间:2024/05/17 18:00

参考 http://blog.csdn.net/pandy1110/article/details/5963908

Vector是一个线性顺序结构。相当于数组,但其大小可以不预先指定,并且自动扩展。它可以像数组一样被操作,由于它的特性我们完全可以将vector 看作动态数组。

一、在创建一个vector 后,它会自动在内存中分配一块连续的内存空间进行数据存储,初始的空间大小可以预先指定也可以由vector 默认指定,这个大小即capacity ()函数的返回值。当存储的数据超过分配的空间时vector 会重新分配一块内存块,但这样的分配是很耗时的,在重新分配空间时它会做这样的动作:
首先,vector 会申请一块更大的内存块;
然后,将原来的数据拷贝到新的内存块中;
其次,销毁掉原内存块中的对象(调用对象的析构函数);
最后,将原来的内存空间释放掉。

如果vector 保存的数据量很大时,这样的操作一定会导致糟糕的性能(这也是vector 被设计成比较容易拷贝的值类型的原因)。所以说vector 不是在什么情况下性能都好,只有在预先知道它大小的情况下vector 的性能才是最优的。

1.使用reserve()函数提前设定容量大小,避免多次容量扩充操作导致效率低下。
关于STL容器,最令人称赞的特性之一就是是只要不超过它们的最大大小,它们就可以自动增长到足以容纳你放进去的数据。(要知道这个最大值,只要调用名叫max_size的成员函数。)对于vector和string,如果需要更多空间,就以类似realloc的思想来增长大小。vector容器支持随机访问,因此为了提高效率,它内部使用动态数组的方式实现的。在通过 reserve() 来申请特定大小的时候总是按指数边界来增大其内部缓冲区。当进行insert或push_back等增加元素的操作时,如果此时动态数组的内存不够用,就要动态的重新分配当前大小的1.5~2倍的新内存区,再把原数组的内容复制过去。所以,在一般情况下,其访问速度同一般数组,只有在重新分配发生时,其性能才会下降。正如上面的代码告诉你的那样。而进行pop_back操作时,capacity并不会因为vector容器里的元素减少而有所下降,还会维持操作之前的大小。对于vector容器来说,如果有大量的数据需要进行push_back,应当使用reserve()函数提前设定其容量大小,否则会出现许多次容量扩充操作,导致效率低下。
reserve成员函数允许你最小化必须进行的重新分配的次数,因而可以避免真分配的开销和迭代器/指针/引用失效。但在我解释reserve为什么可以那么做之前,让我简要介绍有时候令人困惑的四个相关成员函数。在标准容器中,只有vector和string提供了所有这些函数。
(1) size()告诉你容器中有多少元素。它没有告诉你容器为它容纳的元素分配了多少内存。 
(2) capacity()告诉你容器在它已经分配的内存中可以容纳多少元素。那是容器在那块内存中总共可以容纳多少元素,而不是还可以容纳多少元素。如果你想知道一个vector或string中有多少没有被占用的内存,你必须从capacity()中减去size()。如果size和capacity返回同样的值,容器中就没有剩余空间了,而下一次插入(通过insert或push_back等)会引发上面的重新分配步骤。 
(3) resize(Container::size_type n)强制把容器改为容纳n个元素。调用resize之后,size将会返回n。如果n小于当前大小,容器尾部的元素会被销毁。如果n大于当前大小,新默认构造的元素会添加到容器尾部。如果n大于当前容量,在元素加入之前会发生重新分配。 
(4) reserve(Container::size_type n)强制容器把它的容量改为至少n,提供的n不小于当前大小。这一般强迫进行一次重新分配,因为容量需要增加。(如果n小于当前容量,vector忽略它,这个调用什么都不做,string可能把它的容量减少为size()和n中大的数,但string的大小没有改变。在我的经验中,使用reserve来从一个string中修整多余容量一般不如使用“交换技巧”,那是条款17的主题。)
这个简介表示了只要有元素需要插入而且容器的容量不足时就会发生重新分配(包括它们维护的原始内存分配和回收,对象的拷贝和析构和迭代器、指针和引用的失效)。所以,避免重新分配的关键是使用reserve尽快把容器的容量设置为足够大,最好在容器被构造之后立刻进行。
例如,假定你想建立一个容纳1-1000值的vector<int>。没有使用reserve,你可以像这样来做:
vector<int> v;
for (int i = 1; i <= 1000; ++i) v.push_back(i);
在大多数STL实现中,这段代码在循环过程中将会导致2到10次重新分配。(10这个数没什么奇怪的。记住vector在重新分配发生时一般把容量翻倍,而1000约等于210。)
把代码改为使用reserve,我们得到这个:
vector<int> v;
v.reserve(1000);
for (int i = 1; i <= 1000; ++i) v.push_back(i);
这在循环中不会发生重新分配。
在大小和容量之间的关系让我们可以预言什么时候插入将引起vector或string执行重新分配,而且,可以预言什么时候插入会使指向容器中的迭代器、指针和引用失效。例如,给出这段代码,
string s;
...
if (s.size() < s.capacity()) {
s.push_back('x');
}
push_back的调用不会使指向这个string中的迭代器、指针或引用失效,因为string的容量保证大于它的大小。如果不是执行push_back,代码在string的任意位置进行一个insert,我们仍然可以保证在插入期间没有发生重新分配,但是,与伴随string插入时迭代器失效的一般规则一致,所有从插入位置到string结尾的迭代器/指针/引用将失效。
回到本条款的主旨,通常有两情况使用reserve来避免不必要的重新分配。第一个可用的情况是当你确切或者大约知道有多少元素将最后出现在容器中。那样的话,就像上面的vector代码,你只是提前reserve适当数量的空间。第二种情况是保留你可能需要的最大的空间,然后,一旦你添加完全部数据,修整掉任何多余的容量。
2.使用“交换技巧”来修整vector过剩空间/内存
有一种方法来把它从曾经最大的容量减少到它现在需要的容量。这样减少容量的方法常常被称为“收缩到合适(shrink to fit)”。该方法只需一条语句:vector<int>(ivec).swap(ivec);
表达式vector<int>(ivec)建立一个临时vector,它是ivec的一份拷贝:vector的拷贝构造函数做了这个工作。但是,vector的拷贝构造函数只分配拷贝的元素需要的内存,所以这个临时vector没有多余的容量。然后我们让临时vector和ivec交换数据,这时我们完成了,ivec只有临时变量的修整过的容量,而这个临时变量则持有了曾经在ivec中的没用到的过剩容量。在这里(这个语句结尾),临时vector被销毁,因此释放了以前ivec使用的内存,收缩到合适。
3.用swap方法强行释放STL Vector所占内存
template < class T> void ClearVector( vector<T>& v )

    vector<T>vtTemp;
    vtTemp.swap( v );

如 
    vector<int> v ;
    nums.push_back(1);
    nums.push_back(3);
    nums.push_back(2);
    nums.push_back(4);
    vector<int>().swap(v);
/* 或者v.swap(vector<int>()); */
/*或者{ std::vector<int> tmp = v;   v.swap(tmp);   }; //加大括号{ }是让tmp退出{ }时自动析构*/

二、vector的特点:

(1) 指定一块如同数组一样的连续存储,但空间可以动态扩展。即它可以像数组一样操作,并且可以进行动态操作。通常体现在push_back() pop_back() 。
(2) 随机访问方便,它像数组一样被访问,即支持[ ] 操作符和vector.at()
(3) 节省空间,因为它是连续存储,在存储数据的区域都是没有被浪费的,但是要明确一点vector 大多情况下并不是满存的,在未存储的区域实际是浪费的。
(4) 在内部进行插入、删除操作效率非常低,这样的操作基本上是被禁止的。Vector 被设计成只能在后端进行追加和删除操作,其原因是vector 内部的实现是按照顺序表的原理。
(5) 只能在vector 的最后进行push 和pop ,不能在vector 的头进行push 和pop 。
(6) 当动态添加的数据超过vector 默认分配的大小时要进行内存的重新分配、拷贝与释放,这个操作非常消耗性能。 所以要vector 达到最优的性能,最好在创建vector 时就指定其空间大小。
Vectors 包含着一系列连续存储的元素,其行为和数组类似。访问Vector中的任意元素或从末尾添加元素都可以在常量级时间复杂度内完成,而查找特定值的元素所处的位置或是在Vector中插入元素则是线性时间复杂度。

三、vector的成员函数

1.Constructors 构造函数
vector<int> v1; //构造一个空的vector
vector<int> v1( 5, 42 ); //构造了一个包含5个值为42的元素的Vector
2.Operators 对vector进行赋值或比较
C++ Vectors能够使用标准运算符: ==, !=, <=, >=, <, 和 >.
要访问vector中的某特定位置的元素可以使用 [] 操作符.//STL 中只有vector 和map 可以通过类数组的方式操作元素,即如同ele[1] 方式
两个vectors被认为是相等的,如果:
(1)它们具有相同的容量
(2)所有相同位置的元素相等.
vectors之间大小的比较是按照词典规则.
3.assign() 对Vector中的元素赋值
语法:
void assign( input_iterator start, input_iterator end );
// 将区间[start, end)的元素赋到当前vector
void assign( size_type num, const TYPE &val );
// 赋num个值为val的元素到vector中,这个函数将会清除掉为vector赋值以前的内容.

4.at() 返回指定位置的元素
语法:
TYPE at( size_type loc );//差不多等同v[i];但比v[i]安全;
5.back() 返回最末一个元素
6.begin() 返回第一个元素的迭代器
7.capacity() 返回vector所能容纳的元素数量(在不重新分配内存的情况下)
8.clear() 清空所有元素
9.empty() 判断Vector是否为空(返回true时为空)
10.end() 返回最末元素的迭代器(译注:实指向最末元素的下一个位置)
11.erase() 删除指定元素
语法:
iterator erase( iterator loc );//删除loc处的元素
iterator erase( iterator start, iterator end );//删除start和end之间的元素
12.front() 返回第一个元素的引用
13.get_allocator() 返回vector的内存分配器
14.insert() 插入元素到Vector中
语法:
iterator insert( iterator loc, const TYPE &val );
//在指定位置loc前插入值为val的元素,返回指向这个元素的迭代器,
void insert( iterator loc, size_type num, const TYPE &val );
//在指定位置loc前插入num个值为val的元素
void insert( iterator loc, input_iterator start, input_iterator end );
//在指定位置loc前插入区间[start, end)的所有元素
15.max_size() 返回Vector所能容纳元素的最大数量(上限)
16.pop_back() 移除最后一个元素
17.push_back() 在Vector最后添加一个元素
18.rbegin() 返回Vector尾部的逆迭代器
19.rend() 返回Vector起始的逆迭代器
20.reserve() 设置Vector最小的元素容纳数量
//为当前vector预留至少共容纳size个元素的空间
21.resize() 改变Vector元素数量的大小
语法:
void resize( size_type size, TYPE val );
//改变当前vector的大小为size,且对新创建的元素赋值val
22.size() 返回Vector元素数量的大小
23.swap() 交换两个Vector
语法:
void swap( vector &from );

原创粉丝点击