C 堆栈和内存的关系

来源:互联网 发布:带着淘宝混异世 编辑:程序博客网 时间:2024/05/13 17:37

程序运行中的内存分配

  程序运行时,特别要注意的是内存的分配。有六个地方都可以保存数据:   (1) 寄存器。这是最快的保存区域,因为它位于和其他所有保存方式不同的地方:处理器内部。然而,寄存器的数量十分有限,所以寄存器是根据需要由编译器分配。我们对此没有直接的控制权,也不可能在自己的程序里找到寄存器存在的任何踪迹。   (2) 堆栈。驻留于常规RAM(随机访问存储器)区域,但可通过它的“堆栈指针”获得处理的直接支持。堆栈指针若向下移,会创建新的内存;若向上移,则会释放那些内存。这是一种特别快、特别有效的数据保存方式,仅次于寄存器。创建程序时,Java编译器必须准确地知道堆栈内保存的所有数据的“长度”以及“存在时间”。这是由于它必须生成相应的代码,以便向上和向下移动指针。这一限制无疑影响了程序的灵活性,所以尽管有些Java数据要保存在堆栈里——特别是对象句柄,但Java对象并不放到其中。   (3) 堆。一种常规用途的内存池(也在RAM区域),其中保存了Java对象。和堆栈不同,“内存堆”或“堆”(Heap)最吸引人的地方在于编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间。因此,用堆保存数据时会得到更大的灵活性。要求创建一个对象时,只需用new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存。当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!   (4) 静态存储。这儿的“静态”(Static)是指“位于固定位置”(尽管也在RAM里)。程序运行期间,静态存储的数据将随时等候调用。可用static关键字指出一个对象的特定元素是静态的。但Java对象本身永远都不会置入静态存储空间。   (5) 常数存储。常数值通常直接置于程序代码内部。这样做是安全的,因为它们永远都不会改变。有的常数需要严格地保护,所以可考虑将它们置入只读存储器(ROM)。   (6) 非RAM存储。若数据完全独立于一个程序之外,则程序不运行时仍可存在,并在程序的控制范围之外。其中两个最主要的例子便是“流式对象”和“固定对象”。对于流式对象,对象会变成字节流,通常会发给另一台机器。而对于固定对象,对象保存在磁盘中。即使程序中止运行,它们仍可保持自己的状态不变。对于这些类型的数据存储,一个特别有用的技巧就是它们能存在于其他媒体中。

堆栈

堆栈都是一种数据项按序排列的数据结构,只能在一端(称为栈顶(top))对数据项进行插入和删除。要点:堆:顺序随意栈:后进先出(Last-In/First-Out)

一、预备知识—程序的内存分配   一个由C/C++编译的程序占用的内存分为以下几个部分   1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。   2、堆区(heap)— 由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。   3、全局区(静态区)(static)— 全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系统释放。   4、文字常量区 — 常量字符串就是放在这里的,程序结束后由系统释放 。   5、程序代码区 — 存放函数体的二进制代码。   二、例子程序   这是一个前辈写的,非常详细   //main.cpp   int a = 0; 全局初始化区   char *p1; 全局未初始化区   main()   {   int b; 栈   char s[] = "abc"; 栈   char *p2; 栈   char *p3 = "123456"; 123456/0在常量区,p3在栈上。   static int c =0; 全局(静态)初始化区   p1 = (char *)malloc(10);   p2 = (char *)malloc(20);   }   分配得来得10和20字节的区域就在堆区。   strcpy(p1, "123456"); 123456/0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。

堆和栈的理论知识

1.申请方式

     stack:   由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间   heap:   需要程序员自己申请,并指明大小,在c中malloc函数   如p1 = (char *)malloc(10);   在C++中用new运算符   如p2 = new char[20];//(char *)malloc(10);   但是注意p1、p2本身是在栈中的。

2.申请后系统的响应

  栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。   堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

3.申请大小的限制

     栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。   堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

4.申请效率的比较

     栈由系统自动分配,速度较快。但程序员是无法控制的。   堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.   另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈,而是直接在进程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活

5.堆和栈中的存储内容

     栈: 在函数调用时,第一个进栈的是主函数中函数调用后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。   当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。   堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

6.存取效率的比较

     char s1[] = "aaaaaaaaaaaaaaa";   char *s2 = "bbbbbbbbbbbbbbbbb";   aaaaaaaaaaa是在运行时刻赋值的;   而bbbbbbbbbbb是在编译时就确定的;   但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。   比如:   #include   void main()   {   char a = 1;   char c[] = "1234567890";   char *p ="1234567890";   a = c[1];   a = p[1];   return;   }   对应的汇编代码   10: a = c[1];   00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]   0040106A 88 4D FC mov byte ptr [ebp-4],cl   11: a = p[1];   0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]   00401070 8A 42 01 mov al,byte ptr [edx+1]   00401073 88 45 FC mov byte ptr [ebp-4],al   第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

7.小结:

     堆和栈的区别可以用如下的比喻来看出:   使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。   使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

堆和栈的主要分别:

  操作系统方面的堆和栈,如上面说的那些,不多说了。   还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足后进先出的性质的数学或数据结构。   虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。
  

堆与栈的分布

补充

  堆栈是一种存储部件,即数据的写入跟读出不需要提供地址,而是根据写入的顺序决定读出的顺序,甚至能将它们恢复成普通的、基于RAM的对象。

五大内存分区
   在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
   ,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。
   ,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
   自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。
   全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区。
   常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)
明确区分堆与栈
   在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿

他第一个开刀。
   首先,我们举一个例子:
    void f() {int* p=new int[5]; }
   这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operatornew分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代

码如下:
   00401028  push       14h
   0040102A  call       operator new (00401060)
   0040102F  add        esp,4
   00401032  mov        dword ptr [ebp-8],eax
   00401035  mov        eax,dword ptr [ebp-8]
   00401038  mov        dword ptr [ebp-4],eax
   这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p么?澳,错了,应该是delete[]p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。
   好了,我们回到我们的主题:堆和栈究竟有什么区别?
   主要的区别由以下几点:
   1、管理方式不同;
   2、空间大小不同;
   3、能否产生碎片不同;
   4、生长方向不同;
   5、分配方式不同;
   6、分配效率不同;
   管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memoryleak。
   空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:    
   打开工程,依次操作菜单如下:Project->Setting->Link,在Category中选中Output,然后在Reserve中设定堆栈的最大值和commit。注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
   碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
   生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
   分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
   分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。    从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。    

   无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候debug可是相当困难的:)
   对了,还有一件事,如果有人把堆栈合起来说,那它的意思是栈,可不是堆,呵呵,清楚了?
static用来控制变量的存储方式和可见性函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题:如果想将函数中此变量的值保存至下一次调用时,如何实现?最容易想到的方法是定义一个全局的变量,但定义为一个全局变量有许多缺点,最明显的缺点是破坏了此变量的访问范围(使得在此函数中定义的变量,不仅仅受此函数控制)。需要一个数据对象为整个类而非某个对象服务,同时又力求不破坏类的封装性,即要求此成员隐藏在类的内部,对外不可见。
   static的内部机制:
   静态数据成员要在程序一开始运行时就必须存在。因为函数在程序运行中被调用,所以静态数据成员不能在任何函数内分配空间和初始化。
   这样,它的空间分配有三个可能的地方,一是作为类的外部接口的头文件,那里有类声明;二是类定义的内部实现,那里有类的成员函数定义;三是应用程序的main()函数前的全局数据声明和定义处。
   静态数据成员要实际地分配空间,故不能在类的声明中定义(只能声明数据成员)。类声明只声明一个类的"尺寸和规格",并不进行实际的内存分配,所以在类声明中写成定义是错误的。它也不能在头文件中类声明的外部定义,因为那会造成在多个使用该类的源文件中,对其重复定义。
   static被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间,静态
数据成员按定义出现的先后顺序依次初始化,注意静态成员嵌套时,要保证所嵌套的成员已经初始化了。消除时的顺序是初始化的反顺序。
   static的优势:
   可以节省内存,因为它是所有对象所公有的,因此,对多个对象来说,静态数据成员只存储一处,供所有对象共用。静态数据成员的值对每个对象都是一样,但它的值是可以更新的。只要对静态数据成员的值更新一次,保证所有对象存取更新后的相同的值,这样可以提高时间效率。
   引用静态数据成员时,采用如下格式:
   <类名>::<静态成员名>
   如果静态数据成员的访问权限允许的话(即public的成员),可在程序中,按上述格式来引用静态数据成员。
      PS:
     (1)类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。
     (2)不能将静态成员函数定义为虚函数。
     (3)由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊,变量地址是指向其数据类型的指针,函数地址类型是一个"nonmember函数指针"。
     (4)由于静态成员函数没有this指针,所以就差不多等同于nonmember函数,结果就产生了一个意想不到的好处:成为一个callback函数,使得我们得以将C++和C-basedX Window系统结合,同时也成功的应用于线程函数身上。
     (5)static并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空

间。
     (6)静态数据成员在<定义或说明>时前面加关键字static。
     (7)静态数据成员是静态存储的,所以必须对它进行初始化。
     (8)静态成员初始化与一般数据成员初始化不同:
     初始化在类体外进行,而前面不加static,以免与一般静态变量或对象相混淆;
     初始化时不加该成员的访问权限控制符private,public等;
     初始化时使用作用域运算符来标明它所属类;
     所以我们得出静态数据成员初始化的格式:
     <数据类型><类名>::<静态数据成员名>=<值>
     (9)为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling用以生成唯一的标志。
一个非常详细例子
//main.cpp
int a = 0; 全局初始化区
char* p1; 全局未初始化区
main()
{
    int b; //栈
    char s[] ="abc";  // 栈
    char*p2;  // 栈
    char* p3 ="123456";  // 123456\0在常量区,p3在栈上。
    static int c=0;  // 全局(静态)初始化区
    p1 =(char*)malloc(10);
    p2 =(char*)malloc(20);  // 分配得来得10和20字节的区域就在堆区。
    strcpy(p1,"123456");  //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}

原创粉丝点击