Huffman编解码完全注释

来源:互联网 发布:开发者猩球java题库 编辑:程序博客网 时间:2024/06/04 18:35

/*

 *  huffman - Encode/Decode files using Huffman encoding.

 *  Copyright (C) 2003  Douglas Ryan Richardson; Gauss Interprise, Inc

 *

 *  This library is free software; you can redistribute it and/or

 *  modify it under the terms of the GNU Lesser General Public

 *  License as published by the Free Software Foundation; either

 *  version 2.1 of the License, or (at your option) any later version.

 *

 *  This library is distributed in the hope that it will be useful,

 *  but WITHOUT ANY WARRANTY; without even the implied warranty of

 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU

 *  Lesser General Public License for more details.

 *

 *  You should have received a copy of the GNU Lesser General Public

 *  License along with this library; if not, write to the Free Software

 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

 */

 

/*

 * 针对可打印字符的huffman编解码.

 */

 

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include "huffman.h"

 

 

#ifdef WIN32

#include <winsock2.h>

#include <winsock.h>

#include <malloc.h>

#define alloca _alloca

#else

#include <netinet/in.h>

#include <sys/socket.h>

#include <sys/types.h>

#endif

 

 

 

// ---------------------------------------------------------------------------------------

/* 描述huffman树的节点 */

typedef struct huffman_node_tag

{

    unsigned char        isLeaf;       // 当前节点是否为叶子节点

    unsigned long        count;     // (字符出现的次数)

    struct huffman_node_tag *parent;   // 当前节点的父亲

    union {                           

       /*

        * 如果改节点为叶子节点, 则有unsigned char symbol字段,

        * 如果该节点不是叶子节点, 则具有左孩子右孩子字段.

        */

       struct {

           struct huffman_node_tag *zero;  // 左孩子

           struct huffman_node_tag *one;   // 右孩子

       };

       unsigned char symbol;    // 存储的字符.

    };

} huffman_node;

/* 编码 */

typedef struct huffman_code_tag

{

    /*

     * numbits 这个字段是用来记录从leaf--->root一共走了多少步.

     * 也就是叶子节点所含字符的编码长度

     * bits 是用来存储编码的, 但是它是以Byte为单位的, 而编码是

     * bit为单位的, 所以需要根据 numbits 去从 bits 里提取出前

     * numbits bit 这才是真正的编码.

     *

     * 比如

     * numbits=4

     * bits = 0110 1011

     * 那么我们应该提取bits的低4 1011

     *

     * 注意 numbits bits是有关系的, bits一定不可能超过 numbits/8 

     */

     

    /* The length of this code in bits. */

    unsigned long numbits;/* 记录从叶子走到root需要多少步, 也就是说需要多少位来对指定的字符进行编码 */

   

    /* The bits that make up this code. The first

       bit is at position 0 in bits[0]. The second

       bit is at position 1 in bits[0]. The eighth

       bit is at position 7 in bits[0]. The ninth

       bit is at position 0 in bits[1]. */

    unsigned char *bits;     /* 用来存储编码String */

} huffman_code;

 

 

 

 

int

main(int argc, char** argv)

{

    /*

    char       memory = 0;

    char       compress = 1;

    int        opt;

    const char    *file_in = NULL;

    const char  *file_out = NULL;

    */

    //FILE     *in = stdin;

    //FILE     *out = stdout;

   

   

    FILE       *in = NULL;

    FILE       *out = NULL;

    FILE       *out2 = NULL;

   

    in = fopen("test.txt", "r+");

    out = fopen("test1.txt", "w+");

    //out2 = fopen("test2.txt", "w+");

   

    int result = 0;

    result = huffman_encode_file(in, out);

    //result = huffman_decode_file(out, out2);

   

    printf("result : %d/n", result);

   

    system("pause");

    return 1;

}

 

 

// ---------------------------------------------------------------------------------------

/**

 * bit-->byte转换, 不足8位则补齐8.

 */

static unsigned long

numbytes_from_numbits(unsigned long numbits)

{

    return numbits / 8 + (numbits % 8 ? 1 : 0);

}

 

/*

 * get_bit returns the ith bit in the bits array

 * in the 0th position of the return value.

 * 取出第i(从低位往高位排)

 */

static unsigned char

get_bit(unsigned char *bits, unsigned long i)

{

    return ( bits[i/8] >> (i%8) ) & 1;

}

 

/**

 * 反转数组的前((numbits/8)+1)个字符

 *

 */

static void

reverse_bits(unsigned char* bits, unsigned long numbits)

{

    unsigned long numbytes = numbytes_from_numbits(numbits);    // 所占字节数.

    unsigned char *tmp = (unsigned char*)calloc(numbytes, sizeof(unsigned char));    // 分配内存

    unsigned long curbit;           // index -- 当前位

    long          curbyte = 0;  // 当前是byteindex

      

    memset(tmp, 0, numbytes);   // tmp指向的buffer清零

    /*

     *

     */

    for(curbit=0; curbit<numbits; ++curbit) {

       unsigned int bitpos = curbit % 8;  // 当前byte里的index

       if(curbit>0 && curbit%8==0) {      //

           ++curbyte;

       }

       /*

        * 按位 OR

        *

        */

       tmp[curbyte] |= ( get_bit(bits, numbits-curbit-1) << bitpos );

    }

    memcpy(bits, tmp, numbytes);

}

 

/*

 * new_code builds a huffman_code from a leaf in

 * a Huffman tree.

 * 对指定的叶子进行编码.

 */

static huffman_code*

new_code(const huffman_node* leaf)

{

    /* Build the huffman code by walking up to

     * the root node and then reversing the bits,

     * since the Huffman code is calculated by

     * walking down the tree. */

    unsigned long numbits = 0;

    unsigned char *bits = NULL;

    huffman_code  *p;

   

    while(leaf!=NULL && leaf->parent!=NULL) {

       huffman_node *parent = leaf->parent;   // 当前活动节点的双亲

       unsigned long cur_byte   = numbits / 8;    // 当前byte

       unsigned char cur_bit    = (unsigned char)(numbits % 8); // 当前byte里的当前bit

      

       /* If we need another byte to hold the code,

          then allocate it. */

       if(cur_bit == 0) {   // 满了一个byte就需要重新分配内存

           size_t newSize = cur_byte + 1;

           bits = (char*)realloc(bits, newSize);

           bits[newSize - 1] = 0; /* Initialize the new byte. */

       }

      

       /*

        * ************************************************************************

        * 需要注意的是右孩子的处理, 因为左孩子已经是0, 初始分配bits的时候就已经把每位都设置为0.

        * ************************************************************************

        */

        

       /* If a one must be added then or it in. If a zero

        * must be added then do nothing, since the byte

        * was initialized to zero. */

       if(leaf == parent->one) {

           /*

            * 右孩子的话就需要把当前位置为1

            */

           bits[cur_byte] |= (1<<cur_bit);

       }

      

       ++numbits;

       leaf = parent;

    }

   

    if( bits != 0) {

       /*

        * 如果编码里头含有1, 则需要进行反转, 如果全为0, 反转后和反转前是一样的, 就没必要反转了

        */

       reverse_bits(bits, numbits);

    }

   

    p = (huffman_code*)malloc(sizeof(huffman_code));

    p->numbits    = numbits; /* 记录从叶子走到root需要多少步, 也就是说需要多少位来对指定的字符进行编码 */

    p->bits    = bits;       /* 用来存储编码的区间 */

      

    return p;

}

 

/**

 * 创建一个孤立的"叶子"节点, 该节点为一个单独的树

 * symbol : 该叶子节点的权,即字符

 */

static huffman_node*

new_leaf_node(unsigned char symbol)

{

    huffman_node *p = (huffman_node*)malloc( sizeof(huffman_node) );

   

    p->isLeaf = 1;

    p->symbol = symbol;

    p->count = 0;

    p->parent = 0;

   

    return p;

}

 

/**

 * 创建节点(该节点不是叶子节点)

 *

 * count  : 字符出现的次数

 * zero   : 左孩子

 * one    : 右兄弟

 *

 * return : 返回一个节点对象

 */

static huffman_node*

new_nonleaf_node(unsigned long count, huffman_node *zero, huffman_node *one)

{

    huffman_node *p = (huffman_node*)malloc( sizeof(huffman_node) );

    p->isLeaf = 0;

    p->count = count;

    p->zero = zero;

    p->one = one;

    p->parent = 0;

    return p;

}

 

/**

 * 释放树占用的内存空间

 */

static void

free_huffman_tree(huffman_node *subtree)

{

    if(subtree == NULL)

       return;   

    if( !(subtree->isLeaf) ) {

       /*

        * 先序遍历进行递归调用

        */

       free_huffman_tree( subtree->zero );

       free_huffman_tree( subtree->one );

    }

    free( subtree );

}

/**

 * free code

 */

static void

free_code(huffman_code* p)

{

    free(p->bits);

    free(p);

}

 

 

 

 

 

// ----------------------------------------------------------------------------------------

#define MAX_SYMBOLS 256

typedef huffman_node* SymbolFrequencies[MAX_SYMBOLS];   /*  */

typedef huffman_code* SymbolEncoder[MAX_SYMBOLS];       /*  */

/*  */

static void

free_encoder(SymbolEncoder *pSE)

{

    unsigned long i;

    for(i = 0; i < MAX_SYMBOLS; ++i) {

       huffman_code *p = (*pSE)[i];

       if( p )    free_code(p);

    }

}

/*  */

static void

init_frequencies(SymbolFrequencies *pSF)

{

    memset(*pSF, 0, sizeof(SymbolFrequencies) );  /* 清零 */

}

 

 

// ----------------------------------------------------------------------------------------

typedef struct buf_cache_tag

{

    /*

     * 该结构主要描述了两个部分, 一个是cache, 一个是bufout.

     * cache是一个临时存储数据的buffer, cache会将数据写往bufout区间,

     * bufout类似一个仓库, 会一直存储cache写入的数据.

     * cache可以多次网bufout内写数据, bufout会一直保存这些数据.

     * bufout是一个动态的buffer, cache每一次往bufout内写数据的时候bufout都需要realloc一次.

     */

    unsigned char *cache;       // 指向真正存储数据的buffer

    unsigned int cache_len; // buffer的长度, 初始的时候就可以设置 cache的大小的

    unsigned int cache_cur; // 数据结尾处(或者说是光标位置)

    unsigned char **pbufout; /*

                             * cache要写数据就往这个空间内写(类似一个动态仓库, 一定是动态的)

                             * (*pbufout)就是真实的存储区

                             */

    unsigned int *pbufoutlen;  // 仓库的大小

} buf_cache;

/* 初始化一个buf_cache */

static int init_cache(buf_cache    *pc,

                    unsigned int    cache_size,

                    unsigned char **pbufout,

                    unsigned int    *pbufoutlen)

{

    assert(pc && pbufout && pbufoutlen);

    if(!pbufout || !pbufoutlen) return 1;

   

    pc->cache     = (unsigned char*)malloc(cache_size);  // 分配存储空间

    pc->cache_len = cache_size; //

    pc->cache_cur = 0;       // 光标从0开始

    pc->pbufout   = pbufout; //

    *pbufout      = NULL;       //

    pc->pbufoutlen    = pbufoutlen;

    *pbufoutlen   = 0;       //

   

    return (pc->cache==NULL ? 0 : 1);

}

 

/* 释放buf_cache */

static void free_cache(buf_cache* pc)

{

    assert( pc );

    if( pc->cache != NULL)

    {

       /*

        * 我觉得这里没有必要free( pc->cache );, 直接执行pc->cache = NULL;就可以保证

        * 逻辑上清cache, 至于真实的存储区内是否仍然有数据并没有意义.

        */

       free( pc->cache );

       pc->cache = NULL;

    }

}

/*

 * cache内的数据写到pbufout中去, 并清洗cache

 * 成功则返回0, 失败返回1.

 */

static int flush_cache(buf_cache* pc)

{

    assert( pc );

   

    if(pc->cache_cur > 0)    // 确定cache_cur有平移, 这样才能确定cache内有数据. 才可以flush

    {

       /* 当前要写的数据长度为pc->cache_cur, 原来的bufout里头本身还有*(pc->pbufoutlen)长度的数据 */

       unsigned int newlen = pc->cache_cur + *(pc->pbufoutlen);

       /* 需要重新为*(pc->pbufout)分配空间, tmp为这个新buffer的首地址 */

       unsigned char*    tmp = realloc(*(pc->pbufout), newlen);

      

       if( !tmp ) return 1;

      

       /* 追加到pbufout结尾处, 而不是覆盖 */

       memcpy(tmp + *(pc->pbufoutlen), pc->cache, pc->cache_cur);

       *pc->pbufout = tmp;         // pbufout指针重定位到新的扩大了的内存区.  

       *pc->pbufoutlen = newlen;   // 重新计算pbufoutlen

       pc->cache_cur = 0;          // cache逻辑上清零

    }

   

    return 0;

}

/* cache */

static int write_cache(buf_cache* pc,

                     const void *to_write,

                     unsigned int to_write_len)

{

    unsigned char* tmp;

   

    assert(pc && to_write);

    assert(pc->cache_len >= pc->cache_cur);

   

    /* If trying to write more than the cache will hold

     * flush the cache and allocate enough space immediately,

     * that is, don't use the cache. */

    if(to_write_len > pc->cache_len - pc->cache_cur)

    {

       /*

        * to_write_len : 需要往cache内写的数据长度

        * pc->cache_len-pc->cache_cur : cache内剩余空间

        * 如果cache存储能力不够则先清洗cache, 再将数据直接写到

        * pbufout中去, 不使用cache.

        */

       unsigned int newlen;

      

       flush_cache( pc );

      

       newlen = *pc->pbufoutlen + to_write_len;

       tmp = realloc(*pc->pbufout, newlen);

       if( !tmp ) return 1;

       memcpy(tmp + *pc->pbufoutlen, to_write, to_write_len);

       *pc->pbufout = tmp;

       *pc->pbufoutlen = newlen;

    }

    else

    {

       /*

        * Write the data to the cache

        * 如果cache存储能力足够,则往cache内追加数据且将当前光标移动到新的数据尾部.

        */

       memcpy(pc->cache+pc->cache_cur, to_write, to_write_len);

       pc->cache_cur += to_write_len;

    }

   

    return 0;

}

 

 

// -------------------------------------------------------------------------------------

/*

 * 计算FILE对象内的各个字符出现的频率

 * 扫描FILE对象,

 */

static unsigned int

get_symbol_frequencies(SymbolFrequencies *pSF, FILE *in)

{

    int c;

    unsigned int total_count = 0;   // FILE对象内的字符总数

   

    init_frequencies( pSF ); /* Set all frequencies to 0. */

   

    /* Count the frequency of each symbol in the input file. */

    while( (c=fgetc(in)) != EOF )

    {

       unsigned char uc = c;

 

       if( !(*pSF)[uc] ) // 如果这个字符没有出现过则为这个字符建立一个叶子

       {

           /*

           * 这里设计的相当有意思,

           * fgetc会获得当前光标所在的字符, 这个字符必然是一个char, 也就是一个

           * unsinged int型数.

           * 我们前面有定义

           * #define MAX_SYMBOLS 256

           * typedef huffman_node* SymbolFrequencies[MAX_SYMBOLS];

           * typedef huffman_code* SymbolEncoder[MAX_SYMBOLS];

           * 这里我们采用SymbolFrequencies[uc]就存储c这个字符.

           * 也就是说

           * SymbolFrequencies[0]==0x00

           * SymbolFrequencies[1]==0x01

           *  ......

           * SymbolFrequencies[65]==A  ( A==65 :) )

           * SymbolFrequencies[66]==B  ( B==66 :) )

           *  ......

           * 起初在typedf SymbolFrequencies的时候, 我着实没看懂, 实在太巧妙了.

           */

           (*pSF)[uc] = new_leaf_node( uc );

       }

       /*

        * 这个自加也非常巧妙, 遇到uc字符则将第uchuffman_nodecount自加

        * 实际就是一个字符一个字符读下去,,

        * 读到了A ++(pSF['A'].count) == ++(pSF[65].count)

        * 读到了B ++(pSF['B'].count) == ++(pSF[66].count)

        * TNND的牛X!

        */

       ++( (*pSF)[uc]->count );

       ++total_count;

    }

 

    return total_count;

}

/* 计算buffer内各个字符的频率,get_symbol_frequencies函数同理 */

static unsigned int

get_symbol_frequencies_from_memory(SymbolFrequencies    *pSF,

                               const unsigned char    *bufin,

                               unsigned int       bufinlen)

{

    unsigned int i;

    unsigned int total_count = 0;

   

    /* Set all frequencies to 0. */

    init_frequencies(pSF);

   

    /* Count the frequency of each symbol in the input file. */

    for(i = 0; i < bufinlen; ++i)

    {

       unsigned char uc = bufin[i];

       if( !(*pSF)[uc] )

       {

           (*pSF)[uc] = new_leaf_node(uc);

       }

       ++(*pSF)[uc]->count;

       ++total_count;

    }

 

    return total_count;

}

 

/*

 * When used by qsort, SFComp sorts the array so that

 * the symbol with the lowest frequency is first. Any

 * NULL entries will be sorted to the end of the list.

 *

 * 两个huffman_node进行对比, count作为比较依据.

 * 即对比两个不同 symbol 出现的频率

 * 非叶子节点通通排在后面

 */

static int

SFComp(const void *p1, const void *p2)

{

    const huffman_node *hn1 = *(const huffman_node**)p1;

    const huffman_node *hn2 = *(const huffman_node**)p2;

   

    /* Sort all NULLs to the end. */

    if(hn1 == NULL && hn2 == NULL)     return 0;

    if(hn1 == NULL)                    return 1;

    if(hn2 == NULL)                    return -1;

   

    if(hn1->count > hn2->count)        return 1;

    else if(hn1->count < hn2->count)   return -1;

   

    return 0;

}

 

/*

 * build_symbol_encoder builds a SymbolEncoder by walking

 * down to the leaves of the Huffman tree and then,

 * for each leaf, determines its code.

 *

 * 递归方式为每个叶子节点编码

 */

static void

build_symbol_encoder(huffman_node *subtree, SymbolEncoder *pSE)

{

    if(subtree == NULL)  return;

   

    if( subtree->isLeaf )

    {

       (*pSE)[subtree->symbol] = new_code( subtree );

    }

    else

    {

       build_symbol_encoder(subtree->zero, pSE);

       build_symbol_encoder(subtree->one, pSE);

    }

}

 

/*

 * calculate_huffman_codes turns pSF into an array

 * with a single entry that is the root of the

 * huffman tree. The return value is a SymbolEncoder,

 * which is an array of huffman codes index by symbol value.

 *

 * 为每个node编码. 这个函数比较重要, 精华就是在这个函数里头的for循环. 哈哈

 * 整个tree的建立全都依赖这个函数

 */

static SymbolEncoder*

calculate_huffman_codes(SymbolFrequencies * pSF)

{

    unsigned int i = 0;

    unsigned int n = 0;

    huffman_node *m1  = NULL, *m2 = NULL;

    SymbolEncoder *pSE = NULL;

   

    /*

     * Sort the symbol frequency array by ascending frequency.

     * 快速排序例程进行排序

     * symbol频率为关键字做升序排列

     * symbol的节点都会按升序排列, 没有symbol的节点会统一排在后面,

     * 通过一个for就能计算出symbol的个数了.

     */

    qsort((*pSF), MAX_SYMBOLS, sizeof((*pSF)[0]), SFComp);

   

    /*

     * Get the number of symbols.

     * 计算huffman树中的字符数, 这个实现可读性不够好

     */

    for(n = 0; (n<MAX_SYMBOLS) && (*pSF)[n]; ++n)

       ;

   

    /*

     * Construct a Huffman tree. This code is based

     * on the algorithm given in Managing Gigabytes

     * by Ian Witten et al, 2nd edition, page 34.

     * Note that this implementation uses a simple

     * count instead of probability.

     */

    for(i = 0; i < (n-1); ++i)

    {

       /* Set m1 and m2 to the two subsets of least probability. */

       m1 = (*pSF)[0];

       m2 = (*pSF)[1];

       /* Replace m1 and m2 with a set {m1, m2} whose probability

        * is the sum of that of m1 and m2.

        * 这个算法有优化的余地的, 因为n在一直减小.

        * 将最小的两个元素合并后得到一个一个节点为m12, 此时m1,m2已经建立起来了关系.

        * 这个m12的地址又被pSF[0]存储, 循环直至整个Tree建立成功.

        * 指针在这里运用的实在太巧妙了.

        * 这一行代码就是建树, 靠,NBA!

        */

       (*pSF)[0] = m1->parent = m2->parent = new_nonleaf_node(m1->count+m2->count, m1, m2);

       (*pSF)[1] = NULL;

       /*

        * Put newSet into the correct count position in pSF.

        * 这里应该可以再进行优化, 是否有必要再进行排序, 或者被排序的数组过长了.

        * 实际上每循环一次n都减少了一次

        */

       qsort((*pSF), n, sizeof((*pSF)[0]), SFComp);

    }/* for完毕的时候就求出了root, pSF[0]就是root, 后面的元素都是NULL

      * 而树通过for循环里头的

      * (*pSF)[0] = m1->parent = m2->parent = new_nonleaf_node(m1->count+m2->count, m1, m2);

      * 已经建立完成了*/

   

    /* Build the SymbolEncoder array from the tree. */

    pSE = (SymbolEncoder*)malloc(sizeof(SymbolEncoder));

    memset(pSE, 0, sizeof(SymbolEncoder));

    build_symbol_encoder((*pSF)[0], pSE);

   

    return pSE;

}

 

/*

 * Write the huffman code table. The format is:

 * 4 byte code count in network byte order.

 * 4 byte number of bytes encoded

 *   (if you decode the data, you should get this number of bytes)

 * code1

 * ...

 * codeN, where N is the count read at the begginning of the file.

 * Each codeI has the following format:

 * 1 byte symbol, 1 byte code bit length, code bytes.

 * Each entry has numbytes_from_numbits code bytes.

 * The last byte of each code may have extra bits, if the number of

 * bits in the code is not a multiple of 8.

 *

 * 编码后的格式 :

 * 0-3byteFILE内出现的不同字符个数(几不同的字符个数)

 * 4-7byteFILE内出现的全部字符个数(所有的字符)

 * 8-X是真正的编码后值

 *

 */

static int

write_code_table(FILE* out, SymbolEncoder *se, unsigned int symbol_count)

{

    unsigned long i, count = 0;

   

    /*

     * Determine the number of entries in se

     * 计算 SymbolEncoder 内具有编码值的元素个数.

     * 即有几种字符

     */

    for(i = 0; i < MAX_SYMBOLS; ++i)

       if( (*se)[i] )

           ++count;

   

    /*

     * Write the number of entries in network byte order.

     * 将字符种数写入到文件头部, [0, 3]一共4个字节

     */

    //i = htonl( count );

    i = count;

    if(fwrite(&i, sizeof(i), 1, out) != 1) return 1;

   

    /*

     * Write the number of bytes that will be encoded.

     * 将字符个数追加到[4,7]一共4个字节

     */

    //symbol_count = htonl(symbol_count);

    symbol_count = symbol_count;

    if(fwrite(&symbol_count, sizeof(symbol_count), 1, out) != 1)   return 1;

   

    /*

     * Write the entries.

     */

    for(i = 0; i < MAX_SYMBOLS; ++i)

    {

       huffman_code *p = (*se)[i];

       if( p != NULL )

       {   /*

            * 每个单元分为三个部分 : 

            * symbol  -- 字符

            * numbits  -- 叶子走到root需要的步数

            * bits    -- 叶子走到root的方式(即最终的编码, 比如说0101)

            */

           unsigned int numbytes;

           /* Write the 1 byte symbol. */

           fputc((unsigned char)i, out);  

           /* Write the 1 byte code bit length. */

           fputc(p->numbits, out);

           /* Write the code bytes. 她这个注释就没有说是几byte, 值得思考一下 */

           numbytes = numbytes_from_numbits( p->numbits );

           /* 将叶子走到root的方式写进去, 这个方式会被整理为byte格式, 不够就补0 */

           if(fwrite(p->bits, 1, numbytes, out) != numbytes)    return 1;

       }

    }

 

    return 0;

}

 

/*

 * Allocates memory and sets *pbufout to point to it. The memory

 * contains the code table.

 *

 * 以指定的格式将编码后的数据写入到cache中去, 实际是写到pbufout中去了.

 *

 */

static int

write_code_table_to_memory(buf_cache      *pc,

                        SymbolEncoder   *se,

                        unsigned int    symbol_count)

{

    unsigned long i, count = 0;

   

    /* Determine the number of entries in se. */

    for(i = 0; i < MAX_SYMBOLS; ++i)

    {

       if((*se)[i])

       {

           ++count;   // 计算不同字符的个数

       }

    }

 

    /* Write the number of entries in network byte order. */

    //i = htonl(count);

    i = count;

    if( write_cache(pc, &i, sizeof(i)) )   // 前四个字节是memory内所有字符数

       return 1;

   

    /* Write the number of bytes that will be encoded. */

    //symbol_count = htonl(symbol_count);

    symbol_count = symbol_count;

    if( write_cache(pc, &symbol_count, sizeof(symbol_count)) )  // 4-8字节是不同字符个数

       return 1;

 

    /* Write the entries. */

    for(i = 0; i < MAX_SYMBOLS; ++i)

    {

       huffman_code *p = (*se)[i];

       if( p )

       {

           /*

            * 对于每次循环来说, 如果p不为NULL, 则将该字符对应的编码写入到cache.

            * 存储格式为三个字节作为一个单位.

            * byte0 --- 字符本身

            * byte1 --- 该字符编码后的码值长度(2进制的位数)

            * byte2 --- 该字符对应的码值

            */

           unsigned int numbytes;

           /*

            * The value of i is < MAX_SYMBOLS (256), so it can

            * be stored in an unsigned char.

            * i转换为char, 可以对应到字符集

            */

           unsigned char uc = (unsigned char)i;

           /*

            * Write the 1 byte symbol.

            * 将字符写到cache

            */

           if(write_cache(pc, &uc, sizeof(uc)))   return 1;

           /*

            * Write the 1 byte code bit length.

            * 将叶子节点到root所需要经过的步数写到cache, 也就是编码的长度

            * 这个数据是为了解码使用的.

            */

           uc = (unsigned char)p->numbits;

           if(write_cache(pc, &uc, sizeof(uc)))   return 1;

           /*

            * Write the code bytes.

            * 将编码值对齐并写如到cache

            * 事先必须知道编码由几位组成, 如果编码为9, 那么就需要2byte来存储这个码值

            * 如果编码为4, 那么就需要1byte来存储了,

            */

           numbytes = numbytes_from_numbits(p->numbits);

           if(write_cache(pc, p->bits, numbytes)) return 1;

       }

    }

 

    return 0;

}

 

/*

 * read_code_table builds a Huffman tree from the code

 * in the in file. This function returns NULL on error.

 * The returned value should be freed with free_huffman_tree.

 *

 *

 */

static huffman_node*

read_code_table(FILE* in, unsigned int *pDataBytes)

{

    huffman_node *root = new_nonleaf_node(0, NULL, NULL);

    unsigned int count;

   

    /*

     * Read the number of entries.

     * (it is stored in network byte order).

     * 获得字符种数, 2byte就是出现的字符种数

     */

    if( fread(&count, sizeof(count), 1, in) != 1 )

    {

       free_huffman_tree( root );

       return NULL;

    }

 

    //count = ntohl(count);

    count = count;

    /*

     * Read the number of data bytes this encoding represents.

     * 一个有多少个字符

     */

    if( fread(pDataBytes, sizeof(*pDataBytes), 1, in) != 1 )

    {

       free_huffman_tree(root);

       return NULL;

    }

   

    //*pDataBytes = ntohl(*pDataBytes);

    *pDataBytes = *pDataBytes;

   

    /* Read the entries. */

    while(count-- > 0)

    {

       int           c;

       unsigned int curbit;

       unsigned char symbol;

       unsigned char numbits;

       unsigned char numbytes;

       unsigned char *bytes;

       huffman_node *p = root;

      

       if( (c=fgetc(in)) == EOF )

       {

           free_huffman_tree( root );

           return NULL;

       }

       symbol = (unsigned char)c;

      

       if( (c=fgetc(in)) == EOF )

       {

           free_huffman_tree( root );

           return NULL;

       }

      

       numbits    = (unsigned char)c;

       numbytes   = (unsigned char)numbytes_from_numbits( numbits );

       bytes      = (unsigned char*)malloc( numbytes );

       if( fread(bytes, 1, numbytes, in) != numbytes )

       {

           free(bytes);

           free_huffman_tree(root);

           return NULL;

       }

 

       /*

        * Add the entry to the Huffman tree. The value

        * of the current bit is used switch between

        * zero and one child nodes in the tree. New nodes

        * are added as needed in the tree.

        */

       for(curbit = 0; curbit < numbits; ++curbit)

       {

           if(get_bit(bytes, curbit))

           {

              if(p->one == NULL)

              {

                  p->one =

                     curbit == (unsigned char)(numbits-1) ?

                     new_leaf_node(symbol) : new_nonleaf_node(0, NULL, NULL);

                  p->one->parent = p;

              }

              p = p->one;

           }

           else

           {

              if(p->zero == NULL)

              {

                  p->zero =

                     curbit == (unsigned char)(numbits - 1) ?

                     new_leaf_node(symbol) : new_nonleaf_node(0, NULL, NULL);

                  p->zero->parent = p;

              }

              p = p->zero;

           }

       }

      

       free(bytes);

    }

   

    return root;

}

/*

 * 将数据从buf读到bufout, 成功则返回0, 其他则返回1.

 * pindex  -- 拷贝的起点

 */

static int

memread(const unsigned char*    buf,

       unsigned int         buflen,

       unsigned int         *pindex,

       void*                bufout,

       unsigned int         readlen)

{

    assert(buf && pindex && bufout);

    assert(buflen >= *pindex);

   

    // 错误

    if(buflen < *pindex)        return 1;

    if(readlen + *pindex >= buflen) return 1;

   

    memcpy(bufout, buf + *pindex, readlen);

    *pindex += readlen;

   

    return 0;

}

/*

 * 从编码后的buf内读数据.

 */

static huffman_node*

read_code_table_from_memory(const unsigned char* bufin,

                         unsigned int         bufinlen,

                         unsigned int         *pindex,

                         unsigned int         *pDataBytes)

{

    huffman_node *root = new_nonleaf_node(0, NULL, NULL);

    unsigned int count;

   

    /*

     * Read the number of entries.

     * (it is stored in network byte order).

     * 读取

     */

    if( memread(bufin, bufinlen, pindex, &count, sizeof(count)) )

    {

       free_huffman_tree(root);

       return NULL;

    }

 

    //count = ntohl(count);

    count = count;

   

    /* Read the number of data bytes this encoding represents. */

    if(memread(bufin, bufinlen, pindex, pDataBytes, sizeof(*pDataBytes)))

    {

       free_huffman_tree(root);

       return NULL;

    }

   

    //*pDataBytes = ntohl(*pDataBytes);

    *pDataBytes = *pDataBytes;

   

    /* Read the entries. */

    while( (count--) > 0 )

    {

       unsigned int curbit;

       unsigned char symbol;

       unsigned char numbits;

       unsigned char numbytes;

       unsigned char *bytes;

       huffman_node *p = root;

 

       if(memread(bufin, bufinlen, pindex, &symbol, sizeof(symbol)))

       {

           free_huffman_tree(root);

           return NULL;

       }

 

       if(memread(bufin, bufinlen, pindex, &numbits, sizeof(numbits)))

       {

           free_huffman_tree(root);

           return NULL;

       }

      

       numbytes = (unsigned char)numbytes_from_numbits(numbits);

       bytes = (unsigned char*)malloc(numbytes);

       if(memread(bufin, bufinlen, pindex, bytes, numbytes))

       {

           free(bytes);

           free_huffman_tree(root);

           return NULL;

       }

 

       /*

        * Add the entry to the Huffman tree. The value

        * of the current bit is used switch between

        * zero and one child nodes in the tree. New nodes

        * are added as needed in the tree.

        */

       for(curbit = 0; curbit < numbits; ++curbit)

       {

           if(get_bit(bytes, curbit))

           {

              if(p->one == NULL)

              {

                  p->one = ( curbit==(unsigned char)(numbits - 1) ) ?

                  new_leaf_node(symbol) : new_nonleaf_node(0, NULL, NULL);

                  p->one->parent = p;

              }

              p = p->one;

           }

           else

           {

              if(p->zero == NULL)

              {

                  p->zero = curbit == (unsigned char)(numbits - 1)

                     ? new_leaf_node(symbol)

                     : new_nonleaf_node(0, NULL, NULL);

                  p->zero->parent = p;

              }

              p = p->zero;

           }

       }

      

       free(bytes);

    }

 

    return root;

}

/*

 * 依次将各个字符的编码写入到out, 这次是直接写, 不对编码进行整齐工作

 * 也就是不将编码强制为byte类型了, 而是直接写入到out.

 */

static int

do_file_encode(FILE* in, FILE* out, SymbolEncoder *se)

{

    unsigned char curbyte = 0;

    unsigned char curbit  = 0;

    int c;

   

    while( (c = fgetc(in)) != EOF)

    {

       //printf("c=%c   /n", c);

       unsigned char uc     = (unsigned char)c;

       huffman_code *code = (*se)[uc];

       unsigned long i;

      

       for(i = 0; i < code->numbits; ++i)

       {

           //printf("i=%d   /n", i);

           /* Add the current bit to curbyte. */

           curbyte |= get_bit(code->bits, i) << curbit;

           /* If this byte is filled up then write it

            * out and reset the curbit and curbyte. */

           if(++curbit == 8)

           {

              /*

               * 依次将各个字符的编码写入到out, 这次是直接写, 不对编码进行整齐工作

               * 也就是不将编码强制为byte类型了, 而是直接写入到out.

               */

              fputc(curbyte, out);

              printf("curbyte=%d/n", curbyte);

          

              // printf("curbyte=%d   /n", curbyte);

              curbyte = 0;

              curbit = 0;

           }

       }

       printf("/n");

    }

 

    /*

     * If there is data in curbyte that has not been

     * output yet, which means that the last encoded

     * character did not fall on a byte boundary,

     * then output it.

     */

    if(curbit > 0)

       fputc(curbyte, out);

   

    return 0;

}

/*

 * memory进行编码.

 *

 * pc      -- cache

 * bufin   -- 待编码的buffer

 * bufinlen   -- buffer, 即字符个数

 * se      --

 */

static int

do_memory_encode(buf_cache             *pc,

               const unsigned char *bufin,

               unsigned int         bufinlen,

               SymbolEncoder           *se)

{

    unsigned char curbyte    = 0;       //

    unsigned char curbit = 0;

    unsigned int i;

   

    /* bufin 内的字符依次循环 */

    for(i = 0; i < bufinlen; ++i)

    {

       unsigned char uc = bufin[i];

       huffman_code *code = (*se)[uc]; // 取出第i个字符的编码

       unsigned long i;           

      

       /* 对第i个字符编码长度进行循环 */

       for(i = 0; i < code->numbits; ++i)

       {

           /*

            * Add the current bit to curbyte.

            * 依次取出

            */

           curbyte |= ( get_bit(code->bits, i) << curbit );

          

           /*

            * If this byte is filled up then write it

            * out and reset the curbit and curbyte

            */

           if(++curbit == 8)

           {

              /*

               * 满了一个字节则写cache

               *

               */

              if(write_cache(pc, &curbyte, sizeof(curbyte)))   return 1;

              curbyte = 0;

              curbit  = 0;

           }

       }

    }

 

    /*

     * If there is data in curbyte that has not been

     * output yet, which means that the last encoded

     * character did not fall on a byte boundary,

     * then output it.

     */

    return curbit > 0 ? write_cache(pc, &curbyte, sizeof(curbyte)) : 0;

}

 

/*

 * huffman_encode_file huffman encodes in to out.

 * FILE对象进行编码, *in编码后写入*out.

 */

int

huffman_encode_file(FILE *in, FILE *out)

{

    SymbolFrequencies sf;

    SymbolEncoder *se;

    huffman_node *root = NULL;

    int rc;

    unsigned int symbol_count;

   

    /*

     * Get the frequency of each symbol in the input file.

     * FILE中的数据写入到SymbolFrequencies, 计算出了各个字符出现频率,

     * 也计算出了FILE对象内的总字符数.

     */

    symbol_count = get_symbol_frequencies(&sf, in);

      

    /*

     * Build an optimal table from the symbolCount.

     * 建树完毕, root就是sf[0], sf[1]=sf[2]=...sf[MAX_SYMBOLS]=NULL

     */

    se = calculate_huffman_codes( &sf );

    root = sf[0];

   

    /*

     * Scan the file again and, using the table

     * previously built, encode it into the output file.

     */

    rewind( in ); // 将文件指针重新指向一个流的开头

    /*

     * 将编码写如文件流

     */

    rc = write_code_table(out, se, symbol_count);

    if(rc == 0)

       rc = do_file_encode(in, out, se);

   

    /* Free the Huffman tree. */

    free_huffman_tree( root );

    free_encoder(se);

   

    return rc;

}

 

/**

 * FILE进行解码

 */

int

huffman_decode_file(FILE *in, FILE *out)

{

    huffman_node *root;

    huffman_node *p;

    int           c;

    unsigned int data_count;

   

    /* Read the Huffman code table. */

    root = read_code_table(in, &data_count);

    if( !root )   return 1;

 

    /* Decode the file. */

    p = root;

    while(data_count>0 && (c=fgetc(in))!=EOF)

    {

       unsigned char byte = (unsigned char)c;

       unsigned char mask = 1;

       while(data_count > 0 && mask)

       {

           p = ( (byte&mask)? p->one : p->zero );

           mask <<= 1;

          

           if( p->isLeaf )

           {

              fputc(p->symbol, out);

              p = root;

              --data_count;

           }

       }

    }

   

    free_huffman_tree( root );

   

    return 0;

}

 

 

// --------------------------------------------------------------------------------------

#define CACHE_SIZE 1024     /*

                          * memory编码需要考虑到数据源的速度和bufout的接收速度不匹配, cache

                          * cache是为了连接不同速度的设备而设计的

                          */

/**

 * buffer进行编码

 *

 */

int huffman_encode_memory(const unsigned char    *bufin,

                       unsigned int           bufinlen,

                       unsigned char       **pbufout,

                       unsigned int           *pbufoutlen)

{

    SymbolFrequencies    sf;

    SymbolEncoder     *se;

   

    huffman_node *root = NULL;

    int rc;

    unsigned int symbol_count;  // memory中的字符个数

   

    buf_cache cache;         //

   

    /* Ensure the arguments are valid. 检测参数合法性 */

    if(!pbufout || !pbufoutlen) return 1;

    if( init_cache(&cache, CACHE_SIZE, pbufout, pbufoutlen) )   return 1;

   

    /*

     * Get the frequency of each symbol in the input memory

     * 计算bufin内各个字符出现的频率, 并求得bufin内存储的字符个数.

     */

    symbol_count = get_symbol_frequencies_from_memory(&sf, bufin, bufinlen);

   

    /*

     * Build an optimal table from the symbolCount.

     * 为每个Node编码, 如果这个NodesymbolNULL, 则不编码了.

     */

    se = calculate_huffman_codes( &sf );

    root = sf[0]; // root来拉, 哈哈, 逻辑树出来了.

   

    /*

     * Scan the memory again and, using the table

     * previously built, encode it into the output memory.

     * se内的数据统统的写入到cache中克.

     */

    rc = write_code_table_to_memory(&cache, se, symbol_count);

    if(rc == 0)

    {

       /*

        * 为什么write_code_table_to_memory成功之后还要要执行一次do_memory_encode?

        *

        */

       rc = do_memory_encode(&cache, bufin, bufinlen, se);

    }

   

    /* Flush the cache. */

    flush_cache( &cache );

   

    /* Free the Huffman tree. */

    free_huffman_tree( root );

    free_encoder( se );

    free_cache( &cache );

   

    return rc;

}

 

/**

 * bufin进行解码. 将解码后的数据写入到bufout.

 */

int huffman_decode_memory(const unsigned char    *bufin,

                       unsigned int           bufinlen,

                       unsigned char       **pbufout,

                       unsigned int           *pbufoutlen)

{

    huffman_node *root, *p;

    unsigned int data_count;

    unsigned int i = 0;

    unsigned char *buf;

    unsigned int bufcur = 0;

 

    /* Ensure the arguments are valid. */

    if(!pbufout || !pbufoutlen) return 1;

      

    /* Read the Huffman code table. */

    root = read_code_table_from_memory(bufin, bufinlen, &i, &data_count);

    if(!root)  return 1;

 

    buf = (unsigned char*)malloc(data_count);

 

    /* Decode the memory. */

    p = root;

    for(; i < bufinlen && data_count > 0; ++i)

    {

       unsigned char byte = bufin[i];

       unsigned char mask = 1;

       while(data_count > 0 && mask)

       {

           p = byte & mask ? p->one : p->zero;

           mask <<= 1;

 

           if(p->isLeaf)

           {

              buf[bufcur++] = p->symbol;

              p = root;

              --data_count;

           }

       }

    }

 

    free_huffman_tree(root);

    *pbufout = buf;

    *pbufoutlen = bufcur;

   

    return 0;

}

 

/*

--------------------------------------------------------------------------------

 

不妨假设待编码的buffer "ABCAADC"

手工分析可得该树的形状  :

当然也可以也可以将这个树沿y方向翻转180

               root

                //

               /  /

              A    *

                  //

                 /  /

                C    *

                    //

                   /  /

                  B   D

 

现在我们知道的两个事实是 :

这个buffer内的字符数为         : symbol_count    = 7  ( "ABCAADC"一个有7个字符 )

这个buffer内出现的字符种数为    : count       = 4 ( 只出现了ABCD四种字符 )

 

接下来人工分析各个字符 :

symbol |   count  |       bits

--------|-----------|---------------------

  A     |     3     |   0000 0000

  B     |     1     |   0000 0110

  C     |     2     |   0000 0010

  D     |     1     |    0000 0111

我们设置左边为0, 右边为1. bits为从叶子节点走到root的路径.

 

分析完毕后, 需要实现整个编码过程. 编码过程暂时跳过.

假设成功编码完毕, 需要把编码后的数据写入到bufout.

 

bufout

0-3byte为字符种数 count

4-7byte为字符个数 symbol_count

 

 

然后是遍历SymbolEncoder, 依次对每种字符进行编码(我们这个例子只进行4次编码)

我们对每种字符都会进行编码, 每个字符编码后的输出不妨称为frame

那么这个frame是由三个部分组成的:

 

(这个我们可以肯定一个char肯定是1byte)

symbol (1byte)    --

 

(这个我们可以肯定就算这个树根本没有分支, 永远只有左/右孩子, 那也了不起是是256的深度)

numbits (1byte)   -- 叶子走到root需要的步

 

bits   (1byte)    -- 叶子走到root的方式(即最终的编码, 比如说011)

开始我对这个bites到底占了多少个byte很是怀疑, 因为我不知道从叶子走到root

到底耗费了几步. 这里需要好好研究一下, 最好和最差情况. 暂时假设是个变化的byte.

但是有一点bitesnumbits是有关系的, 所以只要知道numbits还是可以知道bites占据

多少byte, 也知道bits到底是有几位.

    byte       content

---------------------------------------------

    0-3(4)     count

    4-7(4)     symbol_count

              

    Axabyte frame_struct

    Bxbbyte frame_struct

    Cxcbyte frame_struct

    Dxdbyte frame_struct

   

       X          X      

 

这个Xdo_file_encode函数写到bufout中去的数据, 那么这个数据是什么呢?

实际上它是循环的把出现的字符的bits写到bufout,

根据这个数据,解码的时候就可以依次的找到第0,1,2...个位置出现的是什么字符

--------------------------------------------------------------------------------

*/