C++对象的内存布局深层剖写(下)

来源:互联网 发布:网络app套什么定额 编辑:程序博客网 时间:2024/06/04 19:07

如果没有看上节内容请:C++ 对象的内存布局深层剖析(上)

重复继承

下面我们再来看看,发生重复继承的情况。所谓重复继承,也就是某个基类被间接地重复继承了多次。

下图是一个继承图,我们重载了父类的f()函数。

 


 

其类继承的源代码如下所示。其中,每个类都有两个变量,一个是整形(4字节),一个是字符(1字节),而且还有自己的虚函数,自己overwrite父类的虚函数。如子类D中,f()覆盖了超类的函数, f1() 和f2() 覆盖了其父类的虚函数,Df()为自己的虚函数。

源码:

/* * ===================================================================================== *       Filename:  testA.cpp *    Description:  对象的内存布局重复继承的测试 *        Version:  1.0 *        Created:  2013年11月26日 19时21分18秒 *       Revision:  none *       Compiler:  gcc *         Author:  max_min_,  * ===================================================================================== */#include <iostream>using namespace std;class B{    public:        B():ib(0),cb('B')        {           }           virtual void f()         {               cout << "B::f()" << endl;        }           virtual void Bf()        {               cout << "B::Bf()" << endl;        }       public:        int ib;         char cb; };class B1:public B{    public:        B1():ib1(11), cb1('1')        {           }           virtual void f()        {            cout << "B1::f()" << endl;        }        virtual void f1()        {            cout << "B1::f1()" << endl;        }        virtual void Bf1()        {            cout << "B1::Bf1()" << endl;        }    public:        int ib1;        char cb1;};class B2:public B{    public:        B2():ib2(12),cb2('2')        {        }        virtual void f()        {            cout << "B2::f()" << endl;        }        virtual void f2()        {            cout << "B2::f2()" << endl;        }        virtual void Bd2()        {            cout << "B2::Bf2" << endl;        }    public:        int  ib2;        char cb2;};class D:public B1, public B2{    public:        D():id(100), cd('D')        {        }        virtual void f()        {            cout << "D::f()" << endl;        }        virtual void f1()        {            cout << "D::f1()" << endl;        }        virtual void f2()        {            cout << "D::f2()" << endl;        }        virtual void Df()        {            cout << "D::Df()" << endl;        }    public:        int  id;        char cd;};typedef void (*Fun)(void);int main(int argc, char *argv[]){    int **pVtab = NULL;    Fun pFun = NULL;    D d;    pVtab = (int **)&d;    cout << "[0] D::B1::_vptr->" << endl;    pFun = (Fun)pVtab[0][0];    cout << "     [0] ";    pFun();    pFun = (Fun)pVtab[0][1];    cout << "     [1] ";    pFun();    pFun = (Fun)pVtab[0][2];    cout << "     [2] ";    pFun();    pFun = (Fun)pVtab[0][3];    cout << "     [3] ";    pFun();    pFun = (Fun)pVtab[0][4];    cout << "     [4] ";    pFun();    pFun = (Fun)pVtab[0][5];    cout << "     [5] 0x" << pFun << endl;    cout << "[1] B::ib   = " << (int )pVtab[1] << endl;    cout << "[2] B::cb   = " << (char)pVtab[2] << endl;    cout << "[3] B1::ib1 = " << (int )pVtab[3] << endl;    cout << "[4] B1::cb1 = " << (char)pVtab[4] << endl;    cout << "[5] D::B2::_vptr->" << endl;    pFun = (Fun)pVtab[5][0];    cout << "     [0] ";    pFun();    pFun = (Fun)pVtab[5][1];    cout << "     [1] ";    pFun();    pFun = (Fun)pVtab[5][2];    cout << "     [2] ";    pFun();    pFun = (Fun)pVtab[5][3];    cout << "     [3] ";    pFun();    pFun = (Fun)pVtab[5][4];    cout << "     [4] 0x" << pFun << endl;    cout << "[6] B::ib   = " << (int )pVtab[6] << endl;    cout << "[7] B::cb   = " << (char)pVtab[7] << endl;    cout << "[8] B2::ib2 = " << (int )pVtab[8] << endl;    cout << "[9] B2::cb2 = " << (char)pVtab[9] << endl;    cout << "[10] D::id  = " << (int )pVtab[10] << endl;    cout << "[11] D::cd  = " << (char)pVtab[11] << endl;    return 0;}           

程序运行结果如下:

 

GCC 3.4.4

VC++ 2003

[0] D::B1::_vptr->

    [0] D::f()

    [1] B::Bf()

    [2] D::f1()

    [3] B1::Bf1()

    [4] D::f2()

    [5] 0x1

[1] B::ib = 0

[2] B::cb = B

[3] B1::ib1 = 11

[4] B1::cb1 = 1

[5] D::B2::_vptr->

    [0] D::f()

    [1] B::Bf()

    [2] D::f2()

    [3] B2::Bf2()

    [4] 0x0

[6] B::ib = 0

[7] B::cb = B

[8] B2::ib2 = 12

[9] B2::cb2 = 2

[10] D::id = 100

[11] D::cd = D

[0] D::B1::_vptr->

    [0] D::f()

    [1] B::Bf()

    [2] D::f1()

    [3] B1::Bf1()

    [4] D::Df()

    [5] 0x00000000

[1] B::ib = 0

[2] B::cb = B

[3] B1::ib1 = 11

[4] B1::cb1 = 1

[5] D::B2::_vptr->

    [0] D::f()

    [1] B::Bf()

    [2] D::f2()

    [3] B2::Bf2()

    [4] 0x00000000

[6] B::ib = 0

[7] B::cb = B

[8] B2::ib2 = 12

[9] B2::cb2 = 2

[10] D::id = 100

[11] D::cd = D

 

下面是对于子类实例中的虚函数表的图:

 

 

 

我们可以看见,最顶端的父类B其成员变量存在于B1和B2中,并被D给继承下去了。而在D中,其有B1和B2的实例,于是B的成员在D的实例中存在两份,一份是B1继承而来的,另一份是B2继承而来的。所以,如果我们使用以下语句,则会产生二义性编译错误:

D d;d.ib = 0;               //二义性错误d.B1::ib = 1;           //正确d.B2::ib = 2;           //正确

注意,上面例程中的最后两条语句存取的是两个变量。虽然我们消除了二义性的编译错误,但B类在D中还是有两个实例,这种继承造成了数据的重复,我们叫这种继承为重复继承。重复的基类数据成员可能并不是我们想要的。所以,C++引入了虚基类的概念。

 

 

钻石型多重虚拟继承

 

虚拟继承的出现就是为了解决重复继承中多个间接父类的问题的。钻石型的结构是其最经典的结构。也是我们在这里要讨论的结构:

 

上述的“重复继承”只需要把B1和B2继承B的语法中加上virtual 关键,就成了虚拟继承,其继承图如下所示:

 

 


 

上图和前面的“重复继承”中的类的内部数据和接口都是完全一样的,只是我们采用了虚拟继承:其省略后的源码如下所示:

class B {……};class B1 : virtual public B{……};class B2: virtual public B{……};class D : public B1, public B2{ …… };

在查看D之前,我们先看一看单一虚拟继承的情况。下面是一段在VC++2003下的测试程序:(因为VC++和GCC的内存而局上有一些细节上的不同,所以这里只给出VC++的程序,GCC下的程序大家可以根据我给出的程序自己仿照着写一个去试一试):

 int** pVtab = NULL;    Fun pFun = NULL;     B1 bb1;     pVtab = (int**)&bb1;    cout << "[0] B1::_vptr->" << endl;    pFun = (Fun)pVtab[0][0];    cout << "     [0] ";    pFun(); //B1::f1();    cout << "     [1] ";    pFun = (Fun)pVtab[0][1];    pFun(); //B1::bf1();    cout << "     [2] ";    cout << pVtab[0][2] << endl;     cout << "[1] = 0x";    cout << (int*)*((int*)(&bb1)+1) <<endl; //B1::ib1    cout << "[2] B1::ib1 = ";    cout << (int)*((int*)(&bb1)+2) <<endl; //B1::ib1    cout << "[3] B1::cb1 = ";    cout << (char)*((int*)(&bb1)+3) << endl; //B1::cb1     cout << "[4] = 0x";    cout << (int*)*((int*)(&bb1)+4) << endl; //NULL     cout << "[5] B::_vptr->" << endl;    pFun = (Fun)pVtab[5][0];    cout << "     [0] ";    pFun(); //B1::f();    pFun = (Fun)pVtab[5][1];    cout << "     [1] ";    pFun(); //B::Bf();    cout << "     [2] ";    cout << "0x" << (Fun)pVtab[5][2] << endl;     cout << "[6] B::ib = ";    cout << (int)*((int*)(&bb1)+6) <<endl; //B::ib    cout << "[7] B::cb = ";

其运行结果如下(我结出了GCC的和VC++2003的对比):

 

GCC 3.4.4

VC++ 2003

[0] B1::_vptr ->

    [0] : B1::f()

    [1] : B1::f1()

    [2] : B1::Bf1()

    [3] : 0

[1] B1::ib1 : 11

[2] B1::cb1 : 1

[3] B::_vptr ->

    [0] : B1::f()

    [1] : B::Bf()

    [2] : 0

[4] B::ib : 0

[5] B::cb : B

[6] NULL : 0

[0] B1::_vptr->

     [0] B1::f1()

     [1] B1::Bf1()

     [2] 0

[1] = 0x00454310ç该地址取值后是-4

[2] B1::ib1 = 11

[3] B1::cb1 = 1

[4] = 0x00000000

[5] B::_vptr->

     [0] B1::f()

     [1] B::Bf()

     [2] 0x00000000

[6] B::ib = 0

[7] B::cb = B

 

 

这里,大家可以自己对比一下。关于细节上,我会在后面一并再说。

 

下面的测试程序是看子类D的内存布局,同样是VC++ 2003的(因为VC++和GCC的内存布局上有一些细节上的不同,而VC++的相对要清楚很多,所以这里只给出VC++的程序,GCC下的程序大家可以根据我给出的程序自己仿照着写一个去试一试):

  D dd;    pVtab = (int**)ⅆ    cout << "[0] D::B1::_vptr->" << endl;    pFun = (Fun)pVtab[0][0];    cout << "     [0] ";    pFun(); //D::f1();    pFun = (Fun)pVtab[0][1];    cout << "     [1] ";    pFun(); //B1::Bf1();    pFun = (Fun)pVtab[0][2];    cout << "     [2] ";    pFun(); //D::Df();    pFun = (Fun)pVtab[0][3];    cout << "     [3] ";    cout << pFun << endl;     //cout << pVtab[4][2] << endl;    cout << "[1] = 0x";    cout <<  (int*)((&dd)+1) <<endl; //????     cout << "[2] B1::ib1 = ";    cout << *((int*)(&dd)+2) <<endl; //B1::ib1    cout << "[3] B1::cb1 = ";    cout << (char)*((int*)(&dd)+3) << endl; //B1::cb1     //---------------------    cout << "[4] D::B2::_vptr->" << endl;    pFun = (Fun)pVtab[4][0];    cout << "     [0] ";    pFun(); //D::f2();    pFun = (Fun)pVtab[4][1];    cout << "     [1] ";    pFun(); //B2::Bf2();    pFun = (Fun)pVtab[4][2];    cout << "     [2] ";    cout << pFun << endl;       cout << "[5] = 0x";    cout << *((int*)(&dd)+5) << endl; // ???     cout << "[6] B2::ib2 = ";    cout << (int)*((int*)(&dd)+6) <<endl; //B2::ib2    cout << "[7] B2::cb2 = ";    cout << (char)*((int*)(&dd)+7) << endl; //B2::cb2     cout << "[8] D::id = ";    cout << *((int*)(&dd)+8) << endl; //D::id    cout << "[9] D::cd = ";    cout << (char)*((int*)(&dd)+9) << endl;//D::cd     cout << "[10]  = 0x";    cout << (int*)*((int*)(&dd)+10) << endl;    //---------------------    cout << "[11] D::B::_vptr->" << endl;    pFun = (Fun)pVtab[11][0];    cout << "     [0] ";    pFun(); //D::f();    pFun = (Fun)pVtab[11][1];    cout << "     [1] ";    pFun(); //B::Bf();    pFun = (Fun)pVtab[11][2];    cout << "     [2] ";    cout << pFun << endl;     cout << "[12] B::ib = ";    cout << *((int*)(&dd)+12) << endl; //B::ib    cout << "[13] B::cb = ";    cout << (char)*((int*)(&dd)+13) <<endl;//B::cb

下面给出运行后的结果(分VC++和GCC两部份)

 

 

GCC 3.4.4

VC++ 2003

[0] B1::_vptr ->

    [0] : D::f()

    [1] : D::f1()

    [2] : B1::Bf1()

    [3] : D::f2()

    [4] : D::Df()

    [5] : 1

[1] B1::ib1 : 11

[2] B1::cb1 : 1

[3] B2::_vptr ->

    [0] : D::f()

    [1] : D::f2()

    [2] : B2::Bf2()

    [3] : 0

[4] B2::ib2 : 12

[5] B2::cb2 : 2

[6] D::id : 100

[7] D::cd : D

[8] B::_vptr ->

    [0] : D::f()

    [1] : B::Bf()

    [2] : 0

[9] B::ib : 0

[10] B::cb : B

[11] NULL : 0

[0] D::B1::_vptr->

     [0] D::f1()

     [1] B1::Bf1()

     [2] D::Df()

     [3] 00000000

[1] = 0x0013FDC4  ç该地址取值后是-4

[2] B1::ib1 = 11

[3] B1::cb1 = 1

[4] D::B2::_vptr->

     [0] D::f2()

     [1] B2::Bf2()

     [2] 00000000

[5] = 0x4539260   ç该地址取值后是-4

[6] B2::ib2 = 12

[7] B2::cb2 = 2

[8] D::id = 100

[9] D::cd = D

[10]  = 0x00000000

[11] D::B::_vptr->

     [0] D::f()

     [1] B::Bf()

     [2] 00000000

[12] B::ib = 0

[13] B::cb = B

 

 

关于虚拟继承的运行结果我就不画图了(前面的作图已经让我产生了很严重的厌倦感,所以就偷个懒了,大家见谅了)

 

在上面的输出结果中,我用不同的颜色做了一些标明。我们可以看到如下的几点:

 

1)无论是GCC还是VC++,除了一些细节上的不同,其大体上的对象布局是一样的。也就是说,先是B1(黄色),然后是B2(绿色),接着是D(灰色),而B这个超类(青蓝色)的实例都放在最后的位置。

2)关于虚函数表,尤其是第一个虚表,GCC和VC++有很重大的不一样。但仔细看下来,还是VC++的虚表比较清晰和有逻辑性。

3)VC++和GCC都把B这个超类放到了最后,而VC++有一个NULL分隔符把B和B1和B2的布局分开。GCC则没有。

4)VC++中的内存布局有两个地址我有些不是很明白,在其中我用红色标出了。取其内容是-4。接道理来说,这个指针应该是指向B类实例的内存地址(这个做法就是为了保证重复的父类只有一个实例的技术)。但取值后却不是。这点我目前还并不太清楚,还向大家请教。

5)GCC的内存布局中在B1和B2中则没有指向B的指针。这点可以理解,编译器可以通过计算B1和B2的size而得出B的偏移量。

 

 

结束语

C++这门语言是一门比较复杂的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要我们去了解他后面的内存对象。这样我们才能真正的了解C++,从而能够更好的使用C++这门最难的编程语言。

 

本文源链接:http://blog.csdn.net/haoel/article/details/3081385



原创粉丝点击