ACM取石子问题

来源:互联网 发布:常州淘宝模特兼职 编辑:程序博客网 时间:2024/05/18 03:46

转自http://www.cnblogs.com/kuangbin/archive/2011/08/27/2155827.html,在此表示感谢!

取石子问题

有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够取胜。

(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

    显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的 法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个, 结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
    这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
(二)威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
    这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是: (0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
    可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
如下三条性质:

    1。任何自然数都包含在一个且仅有一个奇异局势中。
    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
    2。任意操作都可将奇异局势变为非奇异局势。
    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
    3。采用适当的方法,可以将非奇异局势变为奇异局势。

    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj 即可。

    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
    ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若 a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

(三)尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二 种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接 下来都可以变为(0,n,n)的情形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

    对于奇异局势(0,n,n)也一样,结果也是0。

    任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可

//--------------------------------------------------------------------------------------------------------------//

 

威佐夫博弈

版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明
http://yjq24.blogbus.com/logs/42826226.html
大致上是这样的:有两堆石子,不妨先认为一堆有10,另一堆有15个,双方轮流取走一些石子,合法的取法有如下两种:
1)在一堆石子中取走任意多颗;
2)在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必败态(必胜策略)。

  这个可以说是MR.Wythoff(Wythoff于1907年提出此游戏)一生全部的贡献吧,我在一篇日志里就说完有点残酷。这个问题好像被用作编程竞赛的题目,网上有很多把它Label为POJ1067,不过如果学编程的人不知道Beatty定理和Beatty序列,他们所做的只能是找规律而已。

简单分析一下,容易知道两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。

用之前的定理:有限个结点的无回路有向图有唯一的核 中 所述的方法寻找必败态。先标出(0,0),然后划去所有(0,k),(k,0),(k,k)的格点;然后找y=x上方未被划去的格点,标出(1,2),然 后划去(1,k),(k,2),(1+k,2+k),同时标出对称点(2,1),划去(2,k),(1,k),(2+k,1+k);然后在未被划去的点中 在y=x上方再找出(3,5)。。。按照这样的方法做下去,如果只列出a<=b的必败态的话,前面的一些是(0,0),(1,2),(3,5), (4,7),(6,10),…

接下来就是找规律的过程了,可能很辛苦,但是我写得也不容易,而且我暂时没有看到其他地方有这样的证明过程。

忽略(0,0),记第n组必败态为(a[n],b[n])

命题一:a[n+1]=前n组必败态中未出现过的最小正整数

[分析]:如果a[n+1]不是未出现的数中最小的,那么可以从a[n+1]的状态走到一个使a[n+1]更小的状态,和我们的寻找方法矛盾。

命题二:b[n]=a[n]+n

[分析]:归纳法:若前k个必败态分别为 ,下证:第k+1个必败态为

从该第k+1个必败态出发,一共可能走向三类状态,从左边堆拿走一些,从右边堆拿走一些,或者从两堆中拿走一些.下面证明这三类都是胜态.

情况一:由命题一,任意一个比a[k+1]小的数都在之前的必败态中出现过,一旦把左边堆拿少了,我们只要再拿成那个数相应的必败态即可。

情况二(从右边堆拿走不太多):这使得两堆之间的差变小了,比如拿成了 ,则可再拿成

情况二(从右边堆拿走很多):使得右边一堆比左边一堆更少,这时类似于情况一,比如拿成了 (其中a[m]<a[k+1])  ,则可再拿成

情况三:比如拿成 ,则可再拿成

综上所述,任何从出发走向的状态都可以走回核中.故原命题成立.

以上两个命题对于确定(a[n],b[n])是完备的了,给定(0,0)然后按照这两个命题,就可以写出(1,2),(3,5),(4,7),…

这样我们得到了这个数列的递推式,以下我们把这两个命题当成是(a[n],b[n])的定义。

先证明两个性质:

性质一:核中的a[n],b[n]遍历所有正整数。

[分析]:由命题一,二可得a[n],b[n]是递增的,且由a[n]的定义显然。

性质二:A={a[n]:n=1,2,3,…},B={b[n]:n=1,2,3,…},则集合A,B不交。

[分析]:由核是内固集,显然。

看到这里大家有没有想到Beatty序列呢,实际上a[n]和b[n]就是一个Beatty序列。

,有 ,解方程

,到此,我们找到了该必败态的通项公式。

实际上这组Beatty序列还有一些别的性质,比如当一个数是Fibonacci数的时候,另一个数也是Fibonacci数;而且两者的比值也越来越接近黄金比,这些性质在得到通项公式之后不难证明。

总的来说,这个问题给我们了哪些启示呢?首先用定理所说的方法找核,然后给出核的规律(递推,或是通项)并且证明。最后附上一张对应的必败态图.

wythoff

 

 

博弈知识汇总

有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够
取胜。

(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后光者得胜。 显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜  这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
(二)威佐夫博奕(Wythoff Game):
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

        这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)(6,
10)、(8,13)、(9,15)、(11,18)、(12,20)。
 可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
    如下三条性质:

      1。任何自然数都包含在一个且仅有一个奇异局势中。
    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak
-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
      2。任意操作都可将奇异局势变为非奇异局势。
    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
      3。采用适当的方法,可以将非奇异局势变为奇异局势。

    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b  – bk个物体,即变为奇异局势;如果 a = ak ,  b < bk ,则同时从两堆中拿走 ak – ab + ak个物体,变为奇异局势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – aj 即可。

    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

    ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。

(三)尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一
下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

    对于奇异局势(0,n,n)也一样,结果也是0。

    任何奇异局势(a,b,c)都有a(+)b(+)c =0。如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

    例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

    例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品就形成了奇异局势(55,81,102)。

    例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,45,48)。

    例4。我们来实际进行一盘比赛看看:
        甲:(7,8,9)->(1,8,9)奇异局势
        乙:(1,8,9)->(1,8,4)
        甲:(1,8,4)->(1,5,4)奇异局势
        乙:(1,5,4)->(1,4,4)
        甲:(1,4,4)->(0,4,4)奇异局势
        乙:(0,4,4)->(0,4,2)
        甲:(0.4,2)->(0,2,2)奇异局势
        乙:(0,2,2)->(0,2,1)
        甲:(0,2,1)->(0,1,1)奇异局势
        乙:(0,1,1)->(0,1,0)
        甲:(0,1,0)->(0,0,0)奇异局势
        甲胜。

取火柴的游戏
题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 
可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 
题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 
可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。
嘿嘿,这个游戏我早就见识过了。小时候用珠算玩这个游戏:第一档拨一个,第二档拨两个,依次直到第五档拨五个。然后两个人就轮流再把棋子拨下来,谁要是最后一个拨谁就赢。有一次暑假看见两个小孩子在玩这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧
先解决第一个问题吧。
定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 
为利己态,用S表示。
[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。
证明:
    若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
      c = A(1) xor A(2) xor … xor A(n) > 0;
    把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
    那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
    A(1) xor A(2) xor … xor x xor … xor A(n)
  = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
  = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
  = 0
这就是说从A(t)堆中取出 A(t) – x 根火柴后状态就会从S态变为T态。证毕
[定理2]:T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。
      若
      c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
      c’ = A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = 0;
      则有
c xor c’ = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = A(i) xor A(i’) =0
      进而推出A(i) = A(i’),这与已知矛盾。所以命题得证。
[定理 3]:S态,只要方法正确,必赢。 
  最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。
[定理4]:T态,只要对方法正确,必败。 
  由定理3易得。 
接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。
 
孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。
[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。 
证明:
S0态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对 
方取,所以最后一根必己取。败。同理,  T0态必胜#
[定理6]:S1态,只要方法正确,必胜。 
证明:
若此时孤单堆堆数为奇数,把充裕堆取完;否则,取成一根。这样,就变成奇数个孤单堆,由对方取。由定理5,对方必输。己必胜。  # 
[定理7]:S2态不可转一次变为T0态。 
证明:
充裕堆数不可能一次由2变为0。得证。  # 

[定理8]:S2态可一次转变为T2态。 
证明:
由定理1,S态可转变为T态,态可一次转变为T态,又由定理6,S2态不可转一次变为T0态,所以转变的T态为T2态。  # 
[定理9]:T2态,只能转变为S2态或S1态。 
证明:
由定理2,T态必然变为S态。由于充裕堆数不可能一次由2变为0,所以此时的S态不可能为S0态。命题得证。 
[定理10]:S2态,只要方法正确,必胜. 
证明:
方法如下: 
      1)  S2态,就把它变为T2态。(由定理8) 
      2)  对方只能T2转变成S2态或S1态(定理9)
    若转变为S2,  转向1) 
    若转变为S1,  这己必胜。(定理5) 
[定理11]:T2态必输。 
证明:同10。 
综上所述,必输态有:  T2,S0 
          必胜态:    S2,S1,T0. 
两题比较: 
第一题的全过程其实如下: 
S2->T2->S2->T2->  ……  ->T2->S1->T0->S0->T0->……->S0->T0(全0) 
第二题的全过程其实如下: 
S2->T2->S2->T2->  ……  ->T2->S1->S0->T0->S0->……->S0->T0(全0) 
下划线表示胜利一方的取法。  是否发现了他们的惊人相似之处。 我们不难发现(见加黑部分),S1态可以转变为S0态(第二题做法),也可以转变为 T0(第一题做法)。哪一方控制了S1态,他即可以有办法使自己得到最后一根(转变为 T0),也可以使对方得到最后一根(转变为S0)。所以,抢夺S1是制胜的关键! 为此,始终把T2态让给对方,将使对方处于被动状态,他早晚将把状态变为S1.

 

原创粉丝点击