JAVA的一些高级知识集合

来源:互联网 发布:java api 1.8中文 编辑:程序博客网 时间:2024/05/16 12:17



一,java中四种引用类型 
二,Java的垃圾回收机制
三,Java ClassLoader详解
四, Java 分布式对象模型
五,Java堆栈解析
六,java常用集合总结
七,JAVA通过调用数据库函数调用存储过程


一,java中四种引用类型 


对象的强、软、弱和虚引用

在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象。也就是说,只有对象处于可触及(reachable)状态,程序才能使用它。从JDK 1.2版本开始,把对象的引用分为4种级别,从而使程序能更加灵活地控制对象的生命周期。这4种级别由高到低依次为:强引用、软引用、弱引用和虚引用。

 

⑴强引用(StrongReference)
强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。  ps:强引用其实也就是我们平时A a = new A()这个意思。

⑵软引用(SoftReference)
如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存(下文给出示例)。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。

⑶弱引用(WeakReference)
弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。

⑷虚引用(PhantomReference)
“虚引用”顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。
虚引用主要用来跟踪对象被垃圾回收器回收的活动。虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列 (ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之 关联的引用队列中。

ReferenceQueue queue = new ReferenceQueue ();


PhantomReference pr = new PhantomReference (objectqueue); 

程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。如果程序发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
使用软引用构建敏感数据的缓存
1 为什么需要使用软引用

首先,我们看一个雇员信息查询系统的实例。我们将使用一个Java语言实现的雇员信息查询系统查询存储在磁盘文件或者数据库中的雇员人事档案信息。作为一个用户,我们完全有可能需要回头去查看几分钟甚至几秒钟前查看过的雇员档案信息(同样,我们在浏览WEB页面的时候也经常会使用“后退”按钮)。这时我们通常会有两种程序实现方式:一种是把过去查看过的雇员信息保存在内存中,每一个存储了雇员档案信息的Java对象的生命周期贯穿整个应用程序始终;另一种是当用户开始查看其他雇员的档案信息的时候,把存储了当前所查看的雇员档案信息的Java对象结束引用,使得垃圾收集线程可以回收其所占用的内存空间,当用户再次需要浏览该雇员的档案信息的时候,重新构建该雇员的信息。很显然,第一种实现方法将造成大量的内存浪费,而第二种实现的缺陷在于即使垃圾收集线程还没有进行垃圾收集,包含雇员档案信息的对象仍然完好地保存在内存中,应用程序也要重新构建一个对象。我们知道,访问磁盘文件、访问网络资源、查询数据库等操作都是影响应用程序执行性能的重要因素,如果能重新获取那些尚未被回收的Java对象的引用,必将减少不必要的访问,大大提高程序的运行速度。


2 如果使用软引用
SoftReference的特点是它的一个实例保存对一个Java对象的软引用,该软引用的存在不妨碍垃圾收集线程对该Java对象的回收。也就是说,一旦SoftReference保存了对一个Java对象的软引用后,在垃圾线程对这个Java对象回收前,SoftReference类所提供的get()方法返回Java对象的强引用。另外,一旦垃圾线程回收该Java对象之后,get()方法将返回null。
看下面代码:

MyObject aRef = new
MyObject();


SoftReference aSoftRef=new SoftReference(aRef); 

此时,对于这个MyObject对象,有两个引用路径,一个是来自SoftReference对象的软引用,一个来自变量aReference的强引用,所以这个MyObject对象是强可及对象。
随即,我们可以结束aReference对这个MyObject实例的强引用:

aRef = null;


此后,这个MyObject对象成为了软可及对象。如果垃圾收集线程进行内存垃圾收集,并不会因为有一个SoftReference对该对象的引用而始终保留该对象。Java虚拟机的垃圾收集线程对软可及对象和其他一般Java对象进行了区别对待:软可及对象的清理是由垃圾收集线程根据其特定算法按照内存需求决定的。也就是说,垃圾收集线程会在虚拟机抛出OutOfMemoryError之前回收软可及对象,而且虚拟机会尽可能优先回收长时间闲置不用的软可及对象,对那些刚刚构建的或刚刚使用过的“新”软可反对象会被虚拟机尽可能保留。在回收这些对象之前,我们可以通过:

MyObject anotherRef=(MyObject)aSoftRef.get(); 

重新获得对该实例的强引用。而回收之后,调用get()方法就只能得到null了。


3 使用ReferenceQueue清除失去了软引用对象的SoftReference
作为一个Java对象,SoftReference对象除了具有保存软引用的特殊性之外,也具有Java对象的一般性。所以,当软可及对象被回收之后,虽然这个SoftReference对象的get()方法返回null,但这个SoftReference对象已经不再具有存在的价值,需要一个适当的清除机制,避免大量SoftReference对象带来的内存泄漏。在java.lang.ref包里还提供了ReferenceQueue。如果在创建SoftReference对象的时候,使用了一个ReferenceQueue对象作为参数提供给SoftReference的构造方法,如:

ReferenceQueue queue = new
ReferenceQueue();


SoftReference
ref=new
SoftReference(
aMyObjectqueue); 


那么当这个SoftReference所软引用的aMyOhject被垃圾收集器回收的同时,ref所强引用的SoftReference对象被列入ReferenceQueue。也就是说,ReferenceQueue中保存的对象是Reference对象,而且是已经失去了它所软引用的对象的Reference对象。另外从ReferenceQueue这个名字也可以看出,它是一个队列,当我们调用它的poll()方法的时候,如果这个队列中不是空队列,那么将返回队列前面的那个Reference对象。
在任何时候,我们都可以调用ReferenceQueue的poll()方法来检查是否有它所关心的非强可及对象被回收。如果队列为空,将返回一个null,否则该方法返回队列中前面的一个Reference对象。利用这个方法,我们可以检查哪个SoftReference所软引用的对象已经被回收。于是我们可以把这些失去所软引用的对象的SoftReference对象清除掉。常用的方式为:

 

SoftReference ref = null;


 

while ((ref = (EmployeeRef) q.poll()) != null) {


 


// 清除ref


 

}


二、Java的垃圾回收机制

Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new、newarray、anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式地释放。一般来说,堆的是由垃圾回收 来负责的,尽管JVM规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,JVM在实现的时候都有一个由垃圾回收所管理的堆。垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能。

垃圾收集的意义
在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象;而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾。JVM的一个系统级线程会自动释放该内存块。垃圾收集意味着程序不再需要的对象是"无用信息",这些信息将被丢弃。当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用。事实上,除了释放没用的对象,垃圾收集也可以清除内存记录碎片。由于创建对象和垃圾收集器释放丢弃对象所占的内存空间,内存会出现碎片。碎片是分配给对象的内存块之间的空闲内存洞。碎片整理将所占用的堆内存移到堆的一端,JVM将整理出的内存分配给新的对象。
垃圾收集能自动释放内存空间,减轻编程的负担。这使Java 虚拟机具有一些优点。首先,它能使编程效率提高。在没有垃圾收集机制的时候,可能要花许多时间来解决一个难懂的存储器问题。在用Java语言编程的时候,靠垃圾收集机制可大大缩短时间。其次是它保护程序的完整性, 垃圾收集是Java语言安全性策略的一个重要部份。
垃圾收集的一个潜在的缺点是它的开销影响程序性能。Java虚拟机必须追踪运行程序中有用的对象, 而且最终释放没用的对象。这一个过程需要花费处理器的时间。其次垃圾收集算法的不完备性,早先采用的某些垃圾收集算法就不能保证100%收集到所有的废弃内存。当然随着垃圾收集算法的不断改进以及软硬件运行效率的不断提升,这些问题都可以迎刃而解。
垃圾收集的算法分析
Java语言规范没有明确地说明JVM使用哪种垃圾回收算法,但是任何一种垃圾收集算法一般要做2件基本的事情:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。
大多数垃圾回收算法使用了根集(root set)这个概念;所谓根集就量正在执行的Java程序可以访问的引用变量的集合(包括局部变量、参数、类变量),程序可以使用引用变量访问对象的属性和调用对象的方法。垃圾收集首选需要确定从根开始哪些是可达的和哪些是不可达的,从根集可达的对象都是活动对象,它们不能作为垃圾被回收,这也包括从根集间接可达的对象。而根集通过任意路径不可达的对象符合垃圾收集的条件,应该被回收。下面介绍几个常用的算法。
1、 引用计数法(Reference Counting Collector)
引用计数法是唯一没有使用根集的垃圾回收的法,该算法使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。
基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,适宜地必须 实时运行的程序。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量,计数器加1,而每次现有对象出了作用域生,计数器减1。
2、tracing算法(Tracing Collector)
tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器.
3、compacting算法(Compacting Collector)
为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用在新的位置能识别原来 的对象。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。
4、copying算法(Coping Collector)
该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象 面和多个空闲面, 程序从对象面为对象分配空间,当对象满了,基于coping算法的垃圾 收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。
一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。
5、generation算法(Generational Collector)
stop-and-copy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象,这增加了程序等待时间,这是coping算法低效的原因。在程序设计中有这样的规律:多数对象存在的时间比较短,少数的存在时间比较长。因此,generation算法将堆分成两个或多个,每个子堆作为对象的一代(generation)。由于多数对象存在的时间比较短,随着程序丢弃不使用的对象,垃圾收集器将从最年轻的子堆中收集这些对象。在分代式的垃圾收集器运行后,上次运行存活下来的对象移到下一最高代的子堆中,由于老一代的子堆不会经常被回收,因而节省了时间。
6、adaptive算法(Adaptive Collector)
在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。
透视Java垃圾回收
1、命令行参数透视垃圾收集器的运行
2、使用System.gc()可以不管JVM使用的是哪一种垃圾回收的算法,都可以请求Java的垃圾回收。在命令行中有一个参数-verbosegc可以查看Java使用的堆内存的情况,它的格式如下:
java -verbosegc classfile
可以看个例子:
class TestGC
{
public static void main(String[] args)
{
new TestGC();
System.gc();
System.runFinalization();
}
}
在这个例子中,一个新的对象被创建,由于它没有使用,所以该对象迅速地变为可达,程序编译后,执行命令: java -verbosegc TestGC 后结果为:
[Full GC 168K->97K(1984K), 0.0253873 secs]
机器的环境为,Windows 2000 + JDK1.3.1,箭头前后的数据168K和97K分别表示垃圾收集GC前后所有存活对象使用的内存容量,说明有168K-97K=71K的对象容量被回收,括号内的数据1984K为堆内存的总容量,收集所需要的时间是0.0253873秒(这个时间在每次执行的时候会有所不同)。
2、finalize方法透视垃圾收集器的运行在JVM垃圾收集器收集一个对象之前 ,一般要求程序调用适当的方法释放资源,但在没有明确释放资源的情况下,Java提供了缺省机制来终止化该对象心释放资源,这个方法就是finalize()。它的原型为:protected void finalize() throws Throwable在finalize()方法返回之后,对象消失,垃圾收集开始执行。原型中的throws Throwable表示它可以抛出任何类型的异常。之所以要使用finalize(),是由于有时需要采取与Java的普通方法不同的一种方法,通过分配内存来做一些具有C风格的事情。这主要可以通过"固有方法"来进行,它是从Java里调用非Java方法的一种方式。C和C++是目前唯一获得固有方法支持的语言。但由于它们能调用通过其他语言编写的子程序,所以能够有效地调用任何东西。在非Java代码内部,也许能调用C的malloc()系列函数,用它分配存储空间。而且除非调用了free(),否则存储空间不会得到释放,从而造成内存"漏洞"的出现。当然,free()是一个C和C++函数,所以我们需要在finalize()内部的一个固有方法中调用它。也就是说我们不能过多地使用finalize(),它并不是进行普通清除工作的理想场所。在普通的清除工作中,为清除一个对象,那个对象的用户必须在希望进行清除的地点调用一个清除方法。这与C++"破坏器"的概念稍有抵触。在C++中,所有对象都会破坏(清除)。或者换句话说,所有对象都"应该"破坏。若将C++对象创建成一个本地对象,比如在堆栈中创建(在Java中是不可能的),那么清除或破坏工作就会在"结束花括号"所代表的、创建这个对象的作用域的末尾进行。若对象是用new创建的(类似于Java),那么当程序员调用C++的delete命令时(Java没有这个命令),就会调用相应的破坏器。若程序员忘记了,那么永远不会调用破坏器,我们最终得到的将是一个内存"漏洞",另外还包括对象的其他部分永远不会得到清除。相反,Java不允许我们创建本地(局部)对象--无论如何都要使用new。但在Java中,没有"delete"命令来释放对象,因为垃圾收集器会帮助我们自动释放存储空间。所以如果站在比较简化的立场,我们可以说正是由于存在垃圾收集机制,所以Java没有破坏器。然而,随着以后学习的深入,就会知道垃圾收集器的存在并不能完全消除对破坏器的需要,或者说不能消除对破坏器代表的那种机制的需要(而且绝对不能直接调用finalize(),所以应尽量避免用它)。若希望执行除释放存储空间之外的其他某种形式的清除工作,仍然必须调用Java中的一个方法。它等价于C++的破坏器,只是没后者方便。下面这个例子向大家展示了垃圾收集所经历的过程,并对前面的陈述进行了总结。class Chair {static boolean gcrun = false;static boolean f = false;static int created = 0;static int finalized = 0;int i;Chair() {i = ++created;if(created == 47)System.out.println("Created 47");}protected void finalize() {if(!gcrun) {gcrun = true;System.out.println("Beginning to finalize after " + created + " Chairs have been created");}if(i == 47) {System.out.println("Finalizing Chair #47, " +"Setting flag to stop Chair creation");f = true;}finalized++;if(finalized >= created)System.out.println("All " + finalized + " finalized");}}public class Garbage {public static void main(String[] args) {if(args.length == 0) {System.err.println("Usage: \n" + "java Garbage before\n or:\n" + "java Garbage after");return;}while(!Chair.f) {new Chair();
在JVM垃圾收集器收集一个对象之前 ,一般要求程序调用适当的方法释放资源,但在没有明确释放资源的情况下,Java提供了缺省机制来终止化该对象心释放资源,这个方法就是finalize()。它的原型为:
protected void finalize() throws Throwable
在finalize()方法返回之后,对象消失,垃圾收集开始执行。原型中的throws Throwable表示它可以抛出任何类型的异常。
之所以要使用finalize(),是由于有时需要采取与Java的普通方法不同的一种方法,通过分配内存来做一些具有C风格的事情。这主要可以通过"固有方法"来进行,它是从Java里调用非Java方法的一种方式。C和C++是目前唯一获得固有方法支持的语言。但由于它们能调用通过其他语言编写的子程序,所以能够有效地调用任何东西。在非Java代码内部,也许能调用C的malloc()系列函数,用它分配存储空间。而且除非调用了free(),否则存储空间不会得到释放,从而造成内存"漏洞"的出现。当然,free()是一个C和C++函数,所以我们需要在finalize()内部的一个固有方法中调用它。也就是说我们不能过多地使用finalize(),它并不是进行普通清除工作的理想场所。
在普通的清除工作中,为清除一个对象,那个对象的用户必须在希望进行清除的地点调用一个清除方法。这与C++"破坏器"的概念稍有抵触。在C++中,所有对象都会破坏(清除)。或者换句话说,所有对象都"应该"破坏。若将C++对象创建成一个本地对象,比如在堆栈中创建(在Java中是不可能的),那么清除或破坏工作就会在"结束花括号"所代表的、创建这个对象的作用域的末尾进行。若对象是用new创建的(类似于Java),那么当程序员调用C++的delete命令时(Java没有这个命令),就会调用相应的破坏器。若程序员忘记了,那么永远不会调用破坏器,我们最终得到的将是一个内存"漏洞",另外还包括对象的其他部分永远不会得到清除。
相反,Java不允许我们创建本地(局部)对象--无论如何都要使用new。但在Java中,没有"delete"命令来释放对象,因为垃圾收集器会帮助我们自动释放存储空间。所以如果站在比较简化的立场,我们可以说正是由于存在垃圾收集机制,所以Java没有破坏器。然而,随着以后学习的深入,就会知道垃圾收集器的存在并不能完全消除对破坏器的需要,或者说不能消除对破坏器代表的那种机制的需要(而且绝对不能直接调用finalize(),所以应尽量避免用它)。若希望执行除释放存储空间之外的其他某种形式的清除工作,仍然必须调用Java中的一个方法。它等价于C++的破坏器,只是没后者方便。
下面这个例子向大家展示了垃圾收集所经历的过程,并对前面的陈述进行了总结。
class Chair {
static boolean gcrun = false;
static boolean f = false;
static int created = 0;
static int finalized = 0;
int i;
Chair() {
i = ++created;
if(created == 47)
System.out.println("Created 47");
}
protected void finalize() {
if(!gcrun) {
gcrun = true;
System.out.println("Beginning to finalize after " + created + " Chairs have been created");
}
if(i == 47) {
System.out.println("Finalizing Chair #47, " +"Setting flag to stop Chair creation");
f = true;
}
finalized++;
if(finalized >= created)
System.out.println("All " + finalized + " finalized");
}
}
public class Garbage {
public static void main(String[] args) {
if(args.length == 0) {
System.err.println("Usage: \n" + "java Garbage before\n or:\n" + "java Garbage after");
return;
}
while(!Chair.f) {
new Chair();
}
System.out.println("After all Chairs have been created:\n" + "total created = " + Chair.created +
", total finalized = " + Chair.finalized);
if(args[0].equals("before")) {
System.out.println("gc():");
System.gc();
System.out.println("runFinalization():");
System.runFinalization();
}
System.out.println("bye!");
if(args[0].equals("after"))
System.runFinalizersOnExit(true);
}
}
2、tracing算法(Tracing Collector)
tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器.
3、compacting算法(Compacting Collector)
为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用在新的位置能识别原来 的对象。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。
4、copying算法(Coping Collector)
该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象 面和多个空闲面, 程序从对象面为对象分配空间,当对象满了,基于coping算法的垃圾 收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。
一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。
5、generation算法(Generational Collector)
stop-and-copy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象,这增加了程序等待时间,这是coping算法低效的原因。在程序设计中有这样的规律:多数对象存在的时间比较短,少数的存在时间比较长。因此,generation算法将堆分成两个或多个,每个子堆作为对象的一代(generation)。由于多数对象存在的时间比较短,随着程序丢弃不使用的对象,垃圾收集器将从最年轻的子堆中收集这些对象。在分代式的垃圾收集器运行后,上次运行存活下来的对象移到下一最高代的子堆中,由于老一代的子堆不会经常被回收,因而节省了时间。6、adaptive算法(Adaptive Collector)在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。上面这个程序创建了许多Chair对象,而且在垃圾收集器开始运行后的某些时候,程序会停止创建Chair。由于垃圾收集器可能在任何时间运行,所以我们不能准确知道它在何时启动。因此,程序用一个名为gcrun的标记来指出垃圾收集器是否已经开始运行。利用第二个标记f,Chair可告诉main()它应停止对象的生成。这两个标记都是在finalize()内部设置的,它调用于垃圾收集期间。另两个static变量--created以及finalized--分别用于跟踪已创建的对象数量以及
6、adaptive算法(Adaptive Collector)
在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。
上面这个程序创建了许多Chair对象,而且在垃圾收集器开始运行后的某些时候,程序会停止创建Chair。由于垃圾收集器可能在任何时间运行,所以我们不能准确知道它在何时启动。因此,程序用一个名为gcrun的标记来指出垃圾收集器是否已经开始运行。利用第二个标记f,Chair可告诉main()它应停止对象的生成。这两个标记都是在finalize()内部设置的,它调用于垃圾收集期间。另两个static变量--created以及finalized--分别用于跟踪已创建的对象数量以及垃圾收集器已进行完收尾工作的对象数量。最后,每个Chair都有它自己的(非static)int i,所以能跟踪了解它具体的编号是多少。编号为47的Chair进行完收尾工作后,标记会设为true,最终结束Chair对象的创建过程。关于垃圾收集的几点补充经过上述的说明,可以发现垃圾回收有以下的几个特点:(1)垃圾收集发生的不可预知性:由于实现了不同的垃圾收集算法和采用了不同的收集机制,所以它有可能是定时发生,有可能是当出现系统空闲CPU资源时发生,也有可能是和原始的垃圾收集一样,等到内存消耗出现极限时发生,这与垃圾收集器的选择和具体的设置都有关系。(2)垃圾收集的精确性:主要包括2 个方面:(a)垃圾收集器能够精确标记活着的对象;(b)垃圾收集器能够精确地定位对象之间的引用关系。前者是完全地回收所有废弃对象的前提,否则就可能造成内存泄漏。而后者则是实现归并和复制等算法的必要条件。所有不可达对象都能够可靠地得到回收,所有对象都能够重新分配,允许对象的复制和对象内存的缩并,这样就有效地防止内存的支离破碎。(3)现在有许多种不同的垃圾收集器,每种有其算法且其表现各异,既有当垃圾收集开始时就停止应用程序的运行,又有当垃圾收集开始时也允许应用程序的线程运行,还有在同一时间垃圾收集多线程运行。(4)垃圾收集的实现和具体的JVM 以及JVM的内存模型有非常紧密的关系。不同的JVM 可能采用不同的垃圾收集,而JVM 的内存模型决定着该JVM可以采用哪些类型垃圾收集。现在,HotSpot 系列JVM中的内存系统都采用先进的面向对象的框架设计,这使得该系列JVM都可以采用最先进的垃圾收集。(5)随着技术的发展,现代垃圾收集技术提供许多可选的
关于垃圾收集的几点补充
经过上述的说明,可以发现垃圾回收有以下的几个特点:
(1)垃圾收集发生的不可预知性:由于实现了不同的垃圾收集算法和采用了不同的收集机制,所以它有可能是定时发生,有可能是当出现系统空闲CPU资源时发生,也有可能是和原始的垃圾收集一样,等到内存消耗出现极限时发生,这与垃圾收集器的选择和具体的设置都有关系。
(2)垃圾收集的精确性:主要包括2 个方面:(a)垃圾收集器能够精确标记活着的对象;(b)垃圾收集器能够精确地定位对象之间的引用关系。前者是完全地回收所有废弃对象的前提,否则就可能造成内存泄漏。而后者则是实现归并和复制等算法的必要条件。所有不可达对象都能够可靠地得到回收,所有对象都能够重新分配,允许对象的复制和对象内存的缩并,这样就有效地防止内存的支离破碎。
(3)现在有许多种不同的垃圾收集器,每种有其算法且其表现各异,既有当垃圾收集开始时就停止应用程序的运行,又有当垃圾收集开始时也允许应用程序的线程运行,还有在同一时间垃圾收集多线程运行。
(4)垃圾收集的实现和具体的JVM 以及JVM的内存模型有非常紧密的关系。不同的JVM 可能采用不同的垃圾收集,而JVM 的内存模型决定着该JVM可以采用哪些类型垃圾收集。现在,HotSpot 系列JVM中的内存系统都采用先进的面向对象的框架设计,这使得该系列JVM都可以采用最先进的垃圾收集。
(5)随着技术的发展,现代垃圾收集技术提供许多可选的垃圾收集器,而且在配置每种收集器的时候又可以设置不同的参数,这就使得根据不同的应用环境获得最优的应用性能成为可能。针对以上特点,我们在使用的时候要注意:
针对以上特点,我们在使用的时候要注意:
(1)不要试图去假定垃圾收集发生的时间,这一切都是未知的。比如,方法中的一个临时对象在方法调用完毕后就变成了无用对象,这个时候它的内存就可以被释放。
(2)Java中提供了一些和垃圾收集打交道的类,而且提供了一种强行执行垃圾收集的方法--调用System.gc(),但这同样是个不确定的方法。Java 中并不保证每次调用该方法就一定能够启动垃圾收集,它只不过会向JVM发出这样一个申请,到底是否真正执行垃圾收集,一切都是个未知数。(3)挑选适合自己的垃圾收集器。一般来说,如果系统没有特殊和苛刻的性能要求,可以采用JVM的缺省选项。否则可以考虑使用有针对性的垃圾收集器,比如增量收集器就比较适合实时性要求较高的系统之中。系统具有较高的配置,有比较多的闲置资源,可以考虑使用并行标记/清除收集器。(4)关键的也是难把握的问题是内存泄漏。良好的编程习惯和严谨的编程态度永远是最重要的,不要让自己的一个小错误导致内存出现大漏洞。(5)尽早释放无用对象的引用。大多数程序员在使用临时变量的时候,都是让引用变量在退出活动域(scope)后,自动设置为null,暗示垃圾收集器来收集该对象,还必须注意该引用的对象是否被监听,如果有,则要去掉监听器,然后再赋空值。结束语一般来说,Java开发人员可以不重视JVM中堆内存的分配和
(3)挑选适合自己的垃圾收集器。一般来说,如果系统没有特殊和苛刻的性能要求,可以采用JVM的缺省选项。否则可以考虑使用有针对性的垃圾收集器,比如增量收集器就比较适合实时性要求较高的系统之中。系统具有较高的配置,有比较多的闲置资源,可以考虑使用并行标记/清除收集器。
(4)关键的也是难把握的问题是内存泄漏。良好的编程习惯和严谨的编程态度永远是最重要的,不要让自己的一个小错误导致内存出现大漏洞。
(5)尽早释放无用对象的引用。大多数程序员在使用临时变量的时候,都是让引用变量在退出活动域(scope)后,自动设置为null,暗示垃圾收集器来收集该对象,还必须注意该引用的对象是否被监听,如果有,则要去掉监听器,然后再赋空值。
结束语
一般来说,Java开发人员可以不重视JVM中堆内存的分配和垃圾处理收集,但是,充分理解Java的这一特性可以让我们更有效地利用资源。同时要注意finalize()方法是Java的缺省机制,有时为确保对象资源的明确释放,可以编写自己的finalize方法。

new String("To take up space");

三、Java ClassLoader详解

类加载器是 Java 语言的一个创新,也是 Java 语言流行的重要原因之一。它使得 Java 类可以被动态加载到 Java 虚拟机中并执行。类加载器从 JDK 1.0 就出现了,最初是为了满足 Java Applet 的需要而开发出来的。Java Applet 需要从远程下载 Java 类文件到浏览器中并执行。现在类加载器在 Web 容器和 OSGi 中得到了广泛的使用。一般来说,Java 应用的开发人员不需要直接同类加载器进行交互。Java 虚拟机默认的行为就已经足够满足大多数情况的需求了。不过如果遇到了需要与类加载器进行交互的情况,而对类加载器的机制又不是很了解的话,就很容易花大量的时间去调试 ClassNotFoundException 和 NoClassDefFoundError 等异常。本文将详细介绍 Java 的类加载器,帮助读者深刻理解 Java 语言中的这个重要概念。下面首先介绍一些相关的基本概念。

  类加载器基本概念

  顾名思义,类加载器(class loader)用来加载 Java 类到 Java 虚拟机中。一般来说,Java 虚拟机使用 Java 类的方式如下:Java 源程序(.java 文件)在经过 Java 编译器编译之后就被转换成 Java 字节代码(.class 文件)。类加载器负责读取 Java 字节代码,并转换成 java.lang.Class 类的一个实例。每个这样的实例用来表示一个 Java 类。通过此实例的 newInstance()方法就可以创建出该类的一个对象。实际的情况可能更加复杂,比如 Java 字节代码可能是通过工具动态生成的,也可能是通过网络下载的。

  基本上所有的类加载器都是 java.lang.ClassLoader 类的一个实例。下面详细介绍这个 Java 类。

  java.lang.ClassLoader 类介绍

  java.lang.ClassLoader 类的基本职责就是根据一个指定的类的名称,找到或者生成其对应的字节代码,然后从这些字节代码中定义出一个 Java 类,即 java.lang.Class 类的一个实例。除此之外,ClassLoader 还负责加载 Java 应用所需的资源,如图像文件和配置文件等。不过本文只讨论其加载类的功能。为了完成加载类的这个职责,ClassLoader 提供了一系列的方法,比较重要的方法如 表 1 所示。关于这些方法的细节会在下面进行介绍。

  表 1. ClassLoader 中与加载类相关的方法

  方法 说明

  getParent() 返回该类加载器的父类加载器。

  loadClass(String name) 加载名称为 name 的类,返回的结果是 java.lang.Class 类的实例。

  findClass(String name) 查找名称为 name 的类,返回的结果是 java.lang.Class 类的实例。

  findLoadedClass(String name) 查找名称为 name 的已经被加载过的类,返回的结果是 java.lang.Class 类的实例。

  defineClass(String name, byte[] b, int off, int len) 把字节数组 b 中的内容转换成 Java 类,返回的结果是 java.lang.Class 类的实例。这个方法被声明为 final 的。

  resolveClass(Class<?> c) 链接指定的 Java 类。

  对于 表 1 中给出的方法,表示类名称的 name 参数的值是类的二进制名称。需要注意的是内部类的表示,如 com.example.Sample$1 和 com.example.Sample$Inner 等表示方式。这些方法会在下面介绍类加载器的工作机制时,做进一步的说明。下面介绍类加载器的树状组织结构。

  类加载器的树状组织结构

  Java 中的类加载器大致可以分成两类,一类是系统提供的,另外一类则是由 Java 应用开发人员编写的。系统提供的类加载器主要有下面三个:

  引导类加载器(bootstrap class loader):它用来加载 Java 的核心库,是用原生代码来实现的,并不继承自 java.lang.ClassLoader。

  扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。

  系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader() 来获取它。

  除了系统提供的类加载器以外,开发人员可以通过继承 java.lang.ClassLoader 类的方式实现自己的类加载器,以满足一些特殊的需求。

  除了引导类加载器之外,所有的类加载器都有一个父类加载器。通过 表 1 中给出的 getParent() 方法可以得到。对于系统提供的类加载器来说,系统类加载器的父类加载器是扩展类加载器,而扩展类加载器的父类加载器是引导类加载器;对于开发人员编写的类加载器来说,其父类加载器是加载此类加载器 Java 类的类加载器。因为类加载器 Java 类如同其它的 Java 类一样,也是要由类加载器来加载的。一般来说,开发人员编写的类加载器的父类加载器是系统类加载器。类加载器通过这种方式组织起来,形成树状结构。树的根节点就是引导类加载器。图 1 中给出了一个典型的类加载器树状组织结构示意图,其中的箭头指向的是父类加载器。

  图 1. 类加载器树状组织结构示意图

  代码清单 1 演示了类加载器的树状组织结构。

  清单 1. 演示类加载器的树状组织结构

  public class ClassLoaderTree {

  public static void main(String[] args) {

  ClassLoader loader = ClassLoaderTree.class.getClassLoader();

  while (loader != null) {

  System.out.println(loader.toString());

  loader = loader.getParent();

  }

  }

  }

  每个 Java 类都维护着一个指向定义它的类加载器的引用,通过 getClassLoader() 方法就可以获取到此引用。代码清单 1 中通过递归调用 getParent() 方法来输出全部的父类加载器。代码清单 1 的运行结果如 代码清单 2 所示。

  清单 2. 演示类加载器的树状组织结构的运行结果

  sun.misc.Launcher$AppClassLoader@9304b1

  sun.misc.Launcher$ExtClassLoader@190d11

  如 代码清单 2 所示,第一个输出的是 ClassLoaderTree 类的类加载器,即系统类加载器。它是 sun.misc.Launcher$AppClassLoader 类的实例;第二个输出的是扩展类加载器,是 sun.misc.Launcher$ExtClassLoader 类的实例。需要注意的是这里并没有输出引导类加载器,这是由于有些 JDK 的实现对于父类加载器是引导类加载器的情况,getParent() 方法返回 null。

  在了解了类加载器的树状组织结构之后,下面介绍类加载器的代理模式。

  类加载器的代理模式

  类加载器在尝试自己去查找某个类的字节代码并定义它时,会先代理给其父类加载器,由父类加载器先去尝试加载这个类,依次类推。在介绍代理模式背后的动机之前,首先需要说明一下 Java 虚拟机是如何判定两个 Java 类是相同的。Java 虚拟机不仅要看类的全名是否相同,还要看加载此类的类加载器是否一样。只有两者都相同的情况,才认为两个类是相同的。即便是同样的字节代码,被不同的类加载器加载之后所得到的类,也是不同的。比如一个 Java 类 com.example.Sample,编译之后生成了字节代码文件 Sample.class。两个不同的类加载器 ClassLoaderA 和 ClassLoaderB 分别读取了这个 Sample.class 文件,并定义出两个 java.lang.Class 类的实例来表示这个类。这两个实例是不相同的。对于 Java 虚拟机来说,它们是不同的类。试图对这两个类的对象进行相互赋值,会抛出运行时异常 ClassCastException。下面通过示例来具体说明。代码清单 3 中给出了 Java 类 com.example.Sample。

  清单 3. com.example.Sample 类

  package com.example;

  public class Sample {

  private Sample instance;

  public void setSample(Object instance) {

  this.instance = (Sample) instance;

  }

  }

  如 代码清单 3 所示,com.example.Sample 类的方法 setSample 接受一个 java.lang.Object 类型的参数,并且会把该参数强制转换成 com.example.Sample 类型。测试 Java 类是否相同的代码如 代码清单 4 所示。

  清单 4. 测试 Java 类是否相同

  public void testClassIdentity() {

  String classDataRootPath = "C:\\workspace\\Classloader\\classData";

  FileSystemClassLoader fscl1 = new FileSystemClassLoader(classDataRootPath);

  FileSystemClassLoader fscl2 = new FileSystemClassLoader(classDataRootPath);

  String className = "com.example.Sample";

  try {

  Class<?> class1 = fscl1.loadClass(className);

  Object obj1 = class1.newInstance();

  Class<?> class2 = fscl2.loadClass(className);

  Object obj2 = class2.newInstance();

  Method setSampleMethod = class1.getMethod("setSample", java.lang.Object.class);

  setSampleMethod.invoke(obj1, obj2);

  } catch (Exception e) {

  e.printStackTrace();

  }

  }




代码清单 4 中使用了类 FileSystemClassLoader 的两个不同实例来分别加载类 com.example.Sample,得到了两个不同的 java.lang.Class 的实例,接着通过 newInstance() 方法分别生成了两个类的对象 obj1 和 obj2,最后通过 Java 的反射 API 在对象 obj1 上调用方法 setSample,试图把对象 obj2 赋值给 obj1 内部的 instance 对象。代码清单 4 的运行结果如 代码清单 5 所示。

  清单 5. 测试 Java 类是否相同的运行结果

  java.lang.reflect.InvocationTargetException

  at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

  at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

  at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

  at java.lang.reflect.Method.invoke(Method.java:597)

  at classloader.ClassIdentity.testClassIdentity(ClassIdentity.java:26)

  at classloader.ClassIdentity.main(ClassIdentity.java:9)

  Caused by: java.lang.ClassCastException: com.example.Sample

  cannot be cast to com.example.Sample

  at com.example.Sample.setSample(Sample.java:7)

  ... 6 more

  从 代码清单 5 给出的运行结果可以看到,运行时抛出了 java.lang.ClassCastException 异常。虽然两个对象 obj1 和 obj2 的类的名字相同,但是这两个类是由不同的类加载器实例来加载的,因此不被 Java 虚拟机认为是相同的。

  了解了这一点之后,就可以理解代理模式的设计动机了。代理模式是为了保证 Java 核心库的类型安全。所有 Java 应用都至少需要引用 java.lang.Object 类,也就是说在运行的时候,java.lang.Object 这个类需要被加载到 Java 虚拟机中。如果这个加载过程由 Java 应用自己的类加载器来完成的话,很可能就存在多个版本的 java.lang.Object 类,而且这些类之间是不兼容的。通过代理模式,对于 Java 核心库的类的加载工作由引导类加载器来统一完成,保证了 Java 应用所使用的都是同一个版本的 Java 核心库的类,是互相兼容的。

  不同的类加载器为相同名称的类创建了额外的名称空间。相同名称的类可以并存在 Java 虚拟机中,只需要用不同的类加载器来加载它们即可。不同类加载器加载的类之间是不兼容的,这就相当于在 Java 虚拟机内部创建了一个个相互隔离的 Java 类空间。这种技术在许多框架中都被用到,后面会详细介绍。

  下面具体介绍类加载器加载类的详细过程。

  加载类的过程

  在前面介绍类加载器的代理模式的时候,提到过类加载器会首先代理给其它类加载器来尝试加载某个类。这就意味着真正完成类的加载工作的类加载器和启动这个加载过程的类加载器,有可能不是同一个。真正完成类的加载工作是通过调用 defineClass 来实现的;而启动类的加载过程是通过调用 loadClass 来实现的。前者称为一个类的定义加载器(defining loader),后者称为初始加载器(initiating loader)。在 Java 虚拟机判断两个类是否相同的时候,使用的是类的定义加载器。也就是说,哪个类加载器启动类的加载过程并不重要,重要的是最终定义这个类的加载器。两种类加载器的关联之处在于:一个类的定义加载器是它引用的其它类的初始加载器。如类 com.example.Outer 引用了类 com.example.Inner,则由类 com.example.Outer 的定义加载器负责启动类 com.example.Inner 的加载过程。

  方法 loadClass() 抛出的是 java.lang.ClassNotFoundException 异常;方法 defineClass() 抛出的是 java.lang.NoClassDefFoundError 异常。

  类加载器在成功加载某个类之后,会把得到的 java.lang.Class 类的实例缓存起来。下次再请求加载该类的时候,类加载器会直接使用缓存的类的实例,而不会尝试再次加载。也就是说,对于一个类加载器实例来说,相同全名的类只加载一次,即 loadClass 方法不会被重复调用。

  下面讨论另外一种类加载器:线程上下文类加载器。

  线程上下文类加载器

  线程上下文类加载器(context class loader)是从 JDK 1.2 开始引入的。类 java.lang.Thread 中的方法 getContextClassLoader() 和 setContextClassLoader(ClassLoader cl) 用来获取和设置线程的上下文类加载器。如果没有通过 setContextClassLoader(ClassLoader cl) 方法进行设置的话,线程将继承其父线程的上下文类加载器。Java 应用运行的初始线程的上下文类加载器是系统类加载器。在线程中运行的代码可以通过此类加载器来加载类和资源。

  前面提到的类加载器的代理模式并不能解决 Java 应用开发中会遇到的类加载器的全部问题。Java 提供了很多服务提供者接口(Service Provider Interface,SPI),允许第三方为这些接口提供实现。常见的 SPI 有 JDBC、JCE、JNDI、JAXP 和 JBI 等。这些 SPI 的接口由 Java 核心库来提供,如 JAXP 的 SPI 接口定义包含在 javax.xml.parsers 包中。这些 SPI 的实现代码很可能是作为 Java 应用所依赖的 jar 包被包含进来,可以通过类路径(CLASSPATH)来找到,如实现了 JAXP SPI 的 Apache Xerces 所包含的 jar 包。SPI 接口中的代码经常需要加载具体的实现类。如 JAXP 中的 javax.xml.parsers.DocumentBuilderFactory 类中的 newInstance() 方法用来生成一个新的 DocumentBuilderFactory 的实例。这里的实例的真正的类是继承自 javax.xml.parsers.DocumentBuilderFactory,由 SPI 的实现所提供的。如在 Apache Xerces 中,实现的类是 org.apache.xerces.jaxp.DocumentBuilderFactoryImpl。而问题在于,SPI 的接口是 Java 核心库的一部分,是由引导类加载器来加载的;SPI 实现的 Java 类一般是由系统类加载器来加载的。引导类加载器是无法找到 SPI 的实现类的,因为它只加载 Java 的核心库。它也不能代理给系统类加载器,因为它是系统类加载器的祖先类加载器。也就是说,类加载器的代理模式无法解决这个问题。

  线程上下文类加载器正好解决了这个问题。如果不做任何的设置,Java 应用的线程的上下文类加载器默认就是系统上下文类加载器。在 SPI 接口的代码中使用线程上下文类加载器,就可以成功的加载到 SPI 实现的类。线程上下文类加载器在很多 SPI 的实现中都会用到。

  下面介绍另外一种加载类的方法:Class.forName。

  Class.forName

  Class.forName 是一个静态方法,同样可以用来加载类。该方法有两种形式:Class.forName(String name, boolean initialize, ClassLoader loader) 和 Class.forName(String className)。第一种形式的参数 name 表示的是类的全名;initialize 表示是否初始化类;loader 表示加载时使用的类加载器。第二种形式则相当于设置了参数 initialize 的值为 true,loader 的值为当前类的类加载器。Class.forName 的一个很常见的用法是在加载数据库驱动的时候。如 Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance() 用来加载 Apache Derby 数据库的驱动。

  在介绍完类加载器相关的基本概念之后,下面介绍如何开发自己的类加载器。

  开发自己的类加载器

  虽然在绝大多数情况下,系统默认提供的类加载器实现已经可以满足需求。但是在某些情况下,您还是需要为应用开发出自己的类加载器。比如您的应用通过网络来传输 Java 类的字节代码,为了保证安全性,这些字节代码经过了加密处理。这个时候您就需要自己的类加载器来从某个网络地址上读取加密后的字节代码,接着进行解密和验证,最后定义出要在 Java 虚拟机中运行的类来。下面将通过两个具体的实例来说明类加载器的开发。

  文件系统类加载器

  第一个类加载器用来加载存储在文件系统上的 Java 字节代码。完整的实现如 代码清单 6 所示。

  清单 6. 文件系统类加载器

  public class FileSystemClassLoader extends ClassLoader {

  private String rootDir;

  public FileSystemClassLoader(String rootDir) {

  this.rootDir = rootDir;

  }

  protected Class<?> findClass(String name) throws ClassNotFoundException {

  byte[] classData = getClassData(name);

  if (classData == null) {

  throw new ClassNotFoundException();

  }

  else {

  return defineClass(name, classData, 0, classData.length);

  }

  }

      private byte[] getClassData(String className) {

  String path = classNameToPath(className);

  try {

  InputStream ins = new FileInputStream(path);

  ByteArrayOutputStream baos = new ByteArrayOutputStream();

  int bufferSize = 4096;

  byte[] buffer = new byte[bufferSize];

  int bytesNumRead = 0;

  while ((bytesNumRead = ins.read(buffer)) != -1) {

  baos.write(buffer, 0, bytesNumRead);

  }

  return baos.toByteArray();

  } catch (IOException e) {

  e.printStackTrace();

  }

  return null;

  }

  private String classNameToPath(String className) {

  return rootDir + File.separatorChar

  + className.replace('.', File.separatorChar) + ".class";

  }

  }

  如 代码清单 6 所示,类 FileSystemClassLoader 继承自类 java.lang.ClassLoader。在 表 1 中列出的 java.lang.ClassLoader 类的常用方法中,一般来说,自己开发的类加载器只需要覆写 findClass(String name) 方法即可。java.lang.ClassLoader 类的方法 loadClass() 封装了前面提到的代理模式的实现。该方法会首先调用 findLoadedClass() 方法来检查该类是否已经被加载过;如果没有加载过的话,会调用父类加载器的 loadClass() 方法来尝试加载该类;如果父类加载器无法加载该类的话,就调用 findClass() 方法来查找该类。因此,为了保证类加载器都正确实现代理模式,在开发自己的类加载器时,最好不要覆写 loadClass() 方法,而是覆写 findClass() 方法。

  类 FileSystemClassLoader 的 findClass() 方法首先根据类的全名在硬盘上查找类的字节代码文件(.class 文件),然后读取该文件内容,最后通过 defineClass() 方法来把这些字节代码转换成 java.lang.Class 类的实例。

  网络类加载器

  下面将通过一个网络类加载器来说明如何通过类加载器来实现组件的动态更新。即基本的场景是:Java 字节代码(.class)文件存放在服务器上,客户端通过网络的方式获取字节代码并执行。当有版本更新的时候,只需要替换掉服务器上保存的文件即可。通过类加载器可以比较简单的实现这种需求。

  类 NetworkClassLoader 负责通过网络下载 Java 类字节代码并定义出 Java 类。它的实现与 FileSystemClassLoader 类似。在通过 NetworkClassLoader 加载了某个版本的类之后,一般有两种做法来使用它。第一种做法是使用 Java 反射 API。另外一种做法是使用接口。需要注意的是,并不能直接在客户端代码中引用从服务器上下载的类,因为客户端代码的类加载器找不到这些类。使用 Java 反射 API 可以直接调用 Java 类的方法。而使用接口的做法则是把接口的类放在客户端中,从服务器上加载实现此接口的不同版本的类。在客户端通过相同的接口来使用这些实现类。网络类加载器的具体代码见 下载。

  在介绍完如何开发自己的类加载器之后,下面说明类加载器和 Web 容器的关系。

  类加载器与 Web 容器

  对于运行在 Java EE? 容器中的 Web 应用来说,类加载器的实现方式与一般的 Java 应用有所不同。不同的 Web 容器的实现方式也会有所不同。以 Apache Tomcat 来说,每个 Web 应用都有一个对应的类加载器实例。该类加载器也使用代理模式,所不同的是它是首先尝试去加载某个类,如果找不到再代理给父类加载器。这与一般类加载器的顺序是相反的。这是 Java Servlet 规范中的推荐做法,其目的是使得 Web 应用自己的类的优先级高于 Web 容器提供的类。这种代理模式的一个例外是:Java 核心库的类是不在查找范围之内的。这也是为了保证 Java 核心库的类型安全。

  绝大多数情况下,Web 应用的开发人员不需要考虑与类加载器相关的细节。下面给出几条简单的原则:

  每个 Web 应用自己的 Java 类文件和使用的库的 jar 包,分别放在 WEB-INF/classes 和 WEB-INF/lib 目录下面。

  多个应用共享的 Java 类文件和 jar 包,分别放在 Web 容器指定的由所有 Web 应用共享的目录下面。

  当出现找不到类的错误时,检查当前类的类加载器和当前线程的上下文类加载器是否正确。

  在介绍完类加载器与 Web 容器的关系之后,下面介绍它与 OSGi 的关系。

  类加载器与 OSGi

  OSGi? 是 Java 上的动态模块系统。它为开发人员提供了面向服务和基于组件的运行环境,并提供标准的方式用来管理软件的生命周期。OSGi 已经被实现和部署在很多产品上,在开源社区也得到了广泛的支持。Eclipse 就是基于 OSGi 技术来构建的。

  OSGi 中的每个模块(bundle)都包含 Java 包和类。模块可以声明它所依赖的需要导入(import)的其它模块的 Java 包和类(通过 Import-Package),也可以声明导出(export)自己的包和类,供其它模块使用(通过 Export-Package)。也就是说需要能够隐藏和共享一个模块中的某些 Java 包和类。这是通过 OSGi 特有的类加载器机制来实现的。OSGi 中的每个模块都有对应的一个类加载器。它负责加载模块自己包含的 Java 包和类。当它需要加载 Java 核心库的类时(以 java 开头的包和类),它会代理给父类加载器(通常是启动类加载器)来完成。当它需要加载所导入的 Java 类时,它会代理给导出此 Java 类的模块来完成加载。模块也可以显式的声明某些 Java 包和类,必须由父类加载器来加载。只需要设置系统属性 org.osgi.framework.bootdelegation 的值即可。

  假设有两个模块 bundleA 和 bundleB,它们都有自己对应的类加载器 classLoaderA 和 classLoaderB。在 bundleA 中包含类 com.bundleA.Sample,并且该类被声明为导出的,也就是说可以被其它模块所使用的。bundleB 声明了导入 bundleA 提供的类 com.bundleA.Sample,并包含一个类 com.bundleB.NewSample 继承自 com.bundleA.Sample。在 bundleB 启动的时候,其类加载器 classLoaderB 需要加载类 com.bundleB.NewSample,进而需要加载类 com.bundleA.Sample。由于 bundleB 声明了类 com.bundleA.Sample 是导入的,classLoaderB 把加载类 com.bundleA.Sample 的工作代理给导出该类的 bundleA 的类加载器 classLoaderA。classLoaderA 在其模块内部查找类 com.bundleA.Sample 并定义它,所得到的类 com.bundleA.Sample 实例就可以被所有声明导入了此类的模块使用。对于以 java 开头的类,都是由父类加载器来加载的。如果声明了系统属性 org.osgi.framework.bootdelegation=com.example.core.*,那么对于包 com.example.core 中的类,都是由父类加载器来完成的。

  OSGi 模块的这种类加载器结构,使得一个类的不同版本可以共存在 Java 虚拟机中,带来了很大的灵活性。不过它的这种不同,也会给开发人员带来一些麻烦,尤其当模块需要使用第三方提供的库的时候。下面提供几条比较好的建议:

  如果一个类库只有一个模块使用,把该类库的 jar 包放在模块中,在 Bundle-ClassPath 中指明即可。

  如果一个类库被多个模块共用,可以为这个类库单独的创建一个模块,把其它模块需要用到的 Java 包声明为导出的。其它模块声明导入这些类。

  如果类库提供了 SPI 接口,并且利用线程上下文类加载器来加载 SPI 实现的 Java 类,有可能会找不到 Java 类。如果出现了 NoClassDefFoundError 异常,首先检查当前线程的上下文类加载器是否正确。通过 Thread.currentThread().getContextClassLoader() 就可以得到该类加载器。该类加载器应该是该模块对应的类加载器。如果不是的话,可以首先通过 class.getClassLoader() 来得到模块对应的类加载器,再通过 Thread.currentThread().setContextClassLoader() 来设置当前线程的上下文类加载器。

  总结

  类加载器是 Java 语言的一个创新。它使得动态安装和更新软件组件成为可能。本文详细介绍了类加载器的相关话题,包括基本概念、代理模式、线程上下文类加载器、与 Web 容器和 OSGi 的关系等。开发人员在遇到 ClassNotFoundException 和 NoClassDefFoundError 等异常的时候,应该检查抛出异常的类的类加载器和当前线程的上下文类加载器,从中可以发现问题的所在。在开发自己的类加载器的时候,需要注意与已有的类加载器组织结构的协调。





四、 Java 分布式对象模型

2.1 分布式对象应用程序

RMI 应用程序通常包括两个独立的程序:服务器程序和客户机程序。典型的服务器应用程序将创建多个远程对象,使这些远程对象能够被引用,然后等待客户机调用那些远程对象上的方法。
定位远程对象 
应用程序可使用两种机制中的一种得到对远程对象的引用。它既可用 RMI 的简单命名工具 rmiregistry 来注册它的远程对象;也可将远程对象引用作为常规操作的一部分来进行传递和返回。 
与远程对象通讯 
远程对象间通讯的细节由 RMI 处理;对于程序员来说,远程通讯看起来就象标准的 Java 方法调用。给作为参数或返回值传递的对象加载类字节码因为 RMI允许调用程序将纯 Java 对象传给远程对象,所以 RMI 将提供必要的机制,既可以加载对象的代码又可以传输对象的数据。 
服务器调用注册服务程序以使名字与远程对象相关联。客户机在服务器注册服务程序中用远程对象的名字查找该远程对象,然后调用它的方法。RMI 能用 Java系统支持的任何 URL 协议(例如 HTTP、FTP、file 等)加载类字节码。 
2.2 术语的定义 
在 Java 分布式对象模型中,remote object 是这样一种对象:它的方法可以从其它 Java 虚拟机(可能在不同的主机上)中调用。该类型的对象由一种或多种 remote interfaces(它是声明远程对象方法的 Java 接口)描述。 
远程方法调用 (RMI) 就是调用远程对象上远程接口的方法的动作。更为重要的是,远程对象的方法调用与本地对象的方法调用语法相同。 
2.3 分布式和非分布式模型的比较 
Java 分布式对象模型在以下几方面与 Java 对象模型相似: 
远程对象的引用在任一种方法调用中(本地或远程)都能以参数形式传递或以结果形式返回。 
远程对象可以被强制转换成任何远程界面,只要该界面为使用内置 Java 语法进行强制类型转换的实现所支持。 
内置 Java 操作符 instanceof 可用来测试远程对象所支持的远程接口。 
Java 分布式对象模型在以下几方面与 Java 对象模型不同: 
远程对象的客户机与远程接口发生交互,而从不与这些接口的实现类交互。 
远程方法的非远程参数和返回结果是通过复制而非引用的方式传递的。这是因为对象的引用只在单个虚拟机中才有用。 
远程对象以引用的方式进行传递,而不是复制实际的远程实现。 
某些 java.lang.Object 类定义的方法的语义专用于远程对象。 
因为调用远程对象的失败模式本来就比调用本地对象的失败模式复杂,所以客户机必须处理远程方法调用期间发生的额外异常。 
2.4 RMI 接口和类概述
2.4.1 java.rmi.Remote 接口 
在 RMI 中,远程接口是声明了可从远程 Java 虚拟机中调用的方法集。远程接口必须满足下列要求: 
远程接口至少必须直接或间接扩展 java.rmi.Remote 接口。 
远程接口中的方法声明必须满足下列远程方法声明的要求: 
远程方法声明在其 throws 子句中除了要包含与应用程序有关的异常(注意与应用程序有关的异常无需扩展 java.rmi.RemoteException )之外,还必须包括 java.rmi.RemoteException 异常(或它的超类,例如 java.io.IOException 或 java.lang.Exception )。 
远程方法声明中,作为参数或返回值声明的(在参数表中直接声明或嵌入到参数的非远程对象中)远程对象必须声明为远程接口,而非该接口的实现类。 
java.rmi.Remote 接口是一个不定义方法的标记接口: 
public interface Remote远程接口必须至少扩展 java.rmi.Remote 接口(或其它扩展java.rmi.Remote 的远程接口)。然而,远程接口在下列情况中可以扩展非远程接口: 
远程接口也可扩展其它非远程接口,只要被扩展接口的所有方法(如果有)满足远程方法声明的要求。 
例如,下面的接口 BankAccount 即为访问银行帐户定义了一个远程接口。它包含往帐户存款、使帐户收支平衡和从帐户取款的远程方法: 
public interface BankAccount extends java.rmi.Remote { 
public void deposit(float amount) throws java.rmi.RemoteException; 
public void withdraw(float amount) throws OverdrawnException, java.rmi.RemoteException; 
public float getBalance() throws java.rmi.RemoteException; 

下例说明了有效的远程接口 Beta。它扩展非远程接口 Alpha(有远程方法)和接口 java.rmi.Remote: 
public interface Alpha { 
public final String okay = "constants are okay too"; 
public Object foo(Object obj) throws java.rmi.RemoteException; 
public void bar() throws java.io.IOException; 
public int baz() throws java.lang.Exception; 

public interface Beta extends Alpha, java.rmi.Remote { 
public void ping() throws java.rmi.RemoteException; 

2.4.2 RemoteException 类 
java.rmi.RemoteException 类是在远程方法调用期间由 RMI 运行时所抛出的异常的超类。为确保使用 RMI 系统的应用程序的健壮性,远程接口中声明的远程方法在其 throws 子句中必须指定 java.rmi.RemoteException 
(或它的超类,例如 java.io.IOException 或 java.lang.Exception)。 
当远程方法调用由于某种原因失败时,将抛出 java.rmi.RemoteException 异常。远程方法调用失败的原因包括: 
通讯失败(远程服务器不可达或拒绝连接;连接被服务器关闭等。) 
参数或返回值传输或读取时失败 
协议错误 
RemoteException 类是一个已检验的异常(必须由远程方法的调用程序处理并经编译器检验的异常),而不是 RuntimeException。 
2.4.3 RemoteObject 类及其子类 
RMI 服务器函数由 java.rmi.server.RemoteObject 及其子类 java.rmi.server.RemoteServer、java.rmi.server.UnicastRemoteObject和 java.rmi.activation.Activatable 提供。 
java.rmi.server.RemoteObject 为对远程对象敏感的 java.lang.Object 方法、hashCode、 equals 和 toString 提供实现。 
创建远程对象并将其导出(使它们可为远程客户机利用)所需的方法由类UnicastRemoteObject 和 Activatable 提供。子类可以识别远程引用的语义,例如服务器是简单的远程对象还是可激活的远程对象(调用时将执行的远程对象)。 
java.rmi.server.UnicastRemoteObject 类定义了单体(单路传送)远程对象,其引用只有在服务器进程活着时才有效。类 java.rmi.activation.Activatable 是抽象类,它定义的 activatable远程对象在其远程方法被调用时开始执行并在必要时自己关闭。 
2.5 实现远程接口
实现远程接口的类的一般规则如下: 
该类通常扩展 java.rmi.server.UnicastRemoteObject,因而将继承类 java.rmi.server.RemoteObject 和java.rmi.server.RemoteServer 提供的远程行为。 
该类能实现任意多的远程接口。 
该类能扩展其它远程实现类。 
该类能定义远程接口中不出现的方法,但这些方法只能在本地使用而不能在远程使用。 
例如,下面的类 BankAcctImpl 实现 BankAccount 远程接口并扩展java.rmi.server.UnicastRemoteObject 类: 
package mypackage; 
import java.rmi.RemoteException; 
import java.rmi.server.UnicastRemoteObject; 
public class BankAccountImpl extends UnicastRemoteObject implements BankAccount { 
private float balance = 0.0; 
public BankAccountImpl(float initialBalance) throws RemoteException { 
balance = initialBalance; 

public void deposit(float amount) throws RemoteException { 
… 

public void withdraw(float amount) throws OverdrawnException, RemoteException { 
… 

public float getBalance() throws RemoteException { 
… 


注意:必要时,实现远程接口的类能扩展除java.rmi.server.UnicastRemoteObject 类以外的其它一些类。但实现类此时必须承担起一定的责任,即导出对象(由 UnicastRemoteObject 构造函数负责)和实现从 java.lang.Object 类继承的 hashCode、 equals 和 toString 方法的正确远程语义(如果需要)。 
2.6 远程方法调用中的参数传递
传给远程对象的参数或源于它的返回值可以是任意可序列化的 Java 对象。这包括 Java 基本类型, 远程?Java 对象和实现 java.io.Serializable 接口的非远程 Java 对象。有关如何使类序列化的详细信息,参见 Java“对象序列化规范”。本地得不到的作为参数或返回值的类,可通过 RMI 系统进行动态下载。 
有关 RMI 读取参数、返回值和异常时如何下载参数和返回值类的详细信息,参见“动态类加载”(3.4)一节。 
2.6.1 传递非远程对象 
非远程对象将作为远程方法调用的参数传递或作为远程方法调用的结果返回时,是通过复制传递的;也就是使用 Java 对象序列化机制将该对象序列化。 因此,在远程对象调用过程中,当非远程对象作为参数或返回值传递时,非远程对象的内容在调用远程对象之前将被复制。 
从远程方法调用返回非远程对象时,将在调用的虚拟机中创建新对象。 
2.6.2 传递远程对象 
当将远程对象作为远程方法调用的参数或返回值传递时,远程对象的 stub 程序即被传递出去。作为参数传递的远程对象仅能实现远程接口。 
2.6.3 引用的完整性 
如果一个对象的两个引用在单个远程方法调用中以参数形式(或返回值形式)从一个虚拟机传到另一个虚拟机中,并且它们在发送虚拟机中指向同一对象,则两个引用在接收虚拟机中将指向该对象的同一副本。进一步说就是:在单个远程方法调用中,RMI 系统将在作为调用参数或返回值传递的对象中保持引用的完整性。 
2.6.4 类注解 
当对象在远程调用中被从一个虚拟机发送到另一个虚拟机中时,RMI 系统在调用流中用类的信息 (URL) 给类描述符加注解,以便该类能在接收器上加载。在远程方法调用期间,调用可随时下载类。 
2.6.5 参数传输 
为将 RMI 调用的参数序列化到远程调用的目的文件里,需要将该参数写入作为java.io.ObjectOutputStream 类的子类的流中。 ObjectOutputStream 子类将覆盖 replaceObject 方法,目的是用其相应的 stub 类取代每个远程对象。 
对象参数将通过 ObjectOutputStream 的 writeObject 方法写入流中。而ObjectOutputStream 则通过 writeObject 方法为每个写入流中的对象(包含所写对象所引用的对象)调用 replaceObject 方法。 RMIObjectOutputStream子类的 replaceObject 方法返回下列值: 
如果传给 replaceObject 的对象是 java.rmi.Remote 的实例,则返回远程对象的 stub 程序。远程对象的 stub 程序通过对java.rmi.server.RemoteObject.toStub 方法的调用而获得。 
如果传给 replaceObject 的对象不是 java.rmi.Remote 的实例,则只返回该对象。 
RMI 的 ObjectOutputStream 子类也实现 annotateClass 方法,该方法用类的位置注解调用流以便能在接收器中下载该类。有关如何使用 annotateClass的详细信息,参见“动态类加载”一节。 
因为参数只写入一个 ObjectOutputStream,所以指向调用程序同一对象的引用将在接收器那里指向该对象的同一副本。在接收器上,参数将被单个ObjectInputStream 所读取。 
用于写对象的 ObjectOutputStream(类似的还有用于读对象的ObjectInputStream )的所有其它缺省行为将保留在参数传递中。例如,写对象时对 writeReplace 的调用及读对象时对 readResolve 的调用就是由 RMI 的参数编组与解编流完成的。 
与上述 RMI 参数传递方式类似,返回值(或异常)将被写入 ObjectOutputStream的子类并和参数传输的替代行为相同。 
2.7 定位远程对象
我们专门提供了一种简单的引导名字服务器,用于存储对远程对象的已命名引用。使用类 java.rmi.Naming 的基于 URL 的方法可以存储远程对象引用。 
客户机要调用远程对象的方法,则必须首先得到该对象的引用。对远程对象的引用通常是在方法调用中以返回值的形式取得。RMI 系统提供一种简单的引导名字服务器,通过它得到给定主机上的远程对象。java.rmi.Naming 类提供基于统一资源定位符 (URL) 的方法,用来绑定、再绑定、解开和列出位于某一主机及端口上的名字-对象对。

而典型的客户机程序则从服务器中得到一个或多个远程对象的引用,然后调用远程对象的方法。RMI 为服务器和客户机进行通讯和信息传递提供了一种机制。这样的应用程序有时被称为分布式对象应用程序。 



五,Java堆栈解析


1、RAM和ROM区别
RAM-RamdomAccessMemory随机存取存储器(断电后数据会丢失),高速存取,读写时间相等,且与地址无关,如计算机内存等。


ROM-Read Only Memory只读存储器。断电后信息不丢失,如计算机启动用的BIOS芯片。存取速度很低,(较RAM而言)且不能改写。由于不能改写信息,不能升级,现已很少使用。


2、栈(stack)与堆(heap)都是Java用来在RAM中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。


3、栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。另外,栈数据可以共享,详见第4点。堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。


4、Java中的数据类型有两种。 
一种是基本类型(primitive types), 共有8种,即int, short, long, float, double, byte, boolean, char(注意,并没有string的基本类型)。这种类型的定义是通过诸如int a = 3; long b = 255L;的形式来定义的,称为自动变量。值得注意的是,自动变量存的是字面值(值引用),不是类的实例,即不是类的引用(类引用),这里并没有类的存在。如int a = 3; 这里的a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出于追求速度的原因,就存在于栈中。


另外,栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义: 
int a = 3; 
int b = 3; 
编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找有没有字面值为3的地址,没找到,就开辟一个存放3这个字面值的地址,然后将a指向3的地址。接着处理int b = 3;在创建完b的引用变量后,由于在栈中已经有3这个字面值,便将b直接指向3的地址。这样,就出现了a与b同时均指向3的情况。


特别注意的是,这种字面值的引用与类对象的引用不同。假定两个类对象的引用同时指向一个对象,如果一个对象引用变量修改了这个对象的内部状态,那么另一个对象引用变量也即刻反映出这个变化。相反,通过字面值的引用来修改其值,不会导致另一个指向此字面值的引用的值也跟着改变的情况。如上例,我们定义完a与b的值后,再令a=4;那么,b不会等于4,还是等于3。在编译器内部,遇到a=4;时,它就会重新搜索栈中是否有4的字面值,如果没有,重新开辟地址存放4的值;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。


另一种是包装类数据,如Integer, String, Double等将相应的基本数据类型包装起来的类。这些类数据全部存在于堆中,Java用new()语句来显示地告诉编译器,在运行时才根据需要动态创建,因此比较灵活,但缺点是要占用更多的时间。


5、String是一个特殊的包装类数据。即可以用String str = new String("abc");的形式来创建,也可以用String str = "abc";的形式来创建(作为对比,在JDK 5.0之前,你从未见过Integer i = 3;的表达式,因为类与字面值是不能通用的,除了String。而在JDK 5.0中,这种表达式是可以的!因为编译器在后台进行Integer i = new Integer(3)的转换)。前者是规范的类的创建过程,即在Java中,一切都是对象,而对象是类的实例,全部通过new()的形式来创建。Java中的有些类,如DateFormat类,可以通过该类的getInstance()方法来返回一个新创建的类,似乎违反了此原则。其实不然。该类运用了单例模式来返回类的实例,只不过这个实例是在该类内部通过new()来创建的,而getInstance()向外部隐藏了此细节。那为什么在String str = "abc";中,并没有通过new()来创建实例,是不是违反了上述原则?其实没有。


6、关于String str = "abc"的内部工作。Java内部将此语句转化为以下几个步骤: 
(1)先定义一个名为str的对String类的对象引用变量:String str; 
(2)在栈中查找有没有存放值为"abc"的地址,如果没有,则开辟一个存放字面值为"abc"的地址,接着创建一个新的String类的对象o,并将o的字符串值指向这个地址,而且在栈中这个地址旁边记下这个引用的对象o。如果已经有了值为"abc"的地址,则查找对象o,并返回o的地址。 
(3)将str指向对象o的地址。


值得注意的是,一般String类中字符串值都是直接存值的。但像String str = "abc";这种场合下,其字符串值却是保存了一个指向存在栈中数据的引用!


为了更好地说明这个问题,我们可以通过以下的几个代码进行验证。 
String str1 = "abc"; 
String str2 = "abc"; 
System.out.println(str1==str2); //true 
注意,我们这里并不用str1.equals(str2);的方式,因为这将比较两个字符串的值是否相等。==号,根据JDK的说明,只有在两个引用都指向了同一个对象时才返回真值。而我们在这里要看的是,str1与str2是否都指向了同一个对象。 
结果说明,JVM创建了两个引用str1和str2,但只创建了一个对象,而且两个引用都指向了这个对象。


我们再来更进一步,将以上代码改成: 
String str1 = "abc"; 
String str2 = "abc"; 
str1 = "bcd"; 
System.out.println(str1 + "," + str2); //bcd, abc 
System.out.println(str1==str2); //false 
这就是说,赋值的变化导致了类对象引用的变化,str1指向了另外一个新对象!而str2仍旧指向原来的对象。上例中,当我们将str1的值改为"bcd"时,JVM发现在栈中没有存放该值的地址,便开辟了这个地址,并创建了一个新的对象,其字符串的值指向这个地址。


事实上,String类被设计成为不可改变(immutable)的类。如果你要改变其值,可以,但JVM在运行时根据新值悄悄创建了一个新对象,然后将这个对象的地址返回给原来类的引用。这个创建过程虽说是完全自动进行的,但它毕竟占用了更多的时间。在对时间要求比较敏感的环境中,会带有一定的不良影响。


再修改原来代码: : 
String str1 = "abc"; 
String str2 = "abc";


str1 = "bcd";


String str3 = str1; 
System.out.println(str3); //bcd


String str4 = "bcd"; 
System.out.println(str1 == str4); //true 
str3这个对象的引用直接指向str1所指向的对象(注意,str3并没有创建新对象)。当str1改完其值后,再创建一个String的引用str4,并指向因str1修改值而创建的新的对象。可以发现,这回str4也没有创建新的对象,从而再次实现栈中数据的共享。


我们再接着看以下的代码。
String str1 = new String("abc"); 
String str2 = "abc"; 
System.out.println(str1==str2); //false 创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。


String str1 = "abc"; 
String str2 = new String("abc"); 
System.out.println(str1==str2); //false 
创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。


以上两段代码说明,只要是用new()来新建对象的,都会在堆中创建,而且其字符串是单独存值的,即使与栈中的数据相同,也不会与栈中的数据共享。


7、数据类型包装类的值不可修改。不仅仅是String类的值不可修改,所有的数据类型包装类都不能更改其内部的值。


8、结论与建议: 
(1)我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,我们创建了String类的对象str。担心陷阱!对象可能并没有被创建!唯一可以肯定的是,指向String类的引用被创建了。至于这个引用到底是否指向了一个新的对象,必须根据上下文来考虑,除非你通过new()方法来显要地创建一个新的对象。因此,更为准确的说法是,我们创建了一个指向String类的对象的引用变量str,这个对象引用变量指向了某个值为"abc"的String类。清醒地认识到这一点对排除程序中难以发现的bug是很有帮助的。


(2)使用String str = "abc";的方式,可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。这个思想应该是享元模式的思想,但JDK的内部在这里实现是否应用了这个模式,不得而知。


(3)当比较包装类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==。


(4)由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。


JAVA数据存储(链接)
1. 寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.
2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)
3. 堆:存放所有new出来的对象。
4. 静态域:存放静态成员(static定义的)
5. 常量池:存放字符串常量和基本类型常量(public static final)。
6. 非RAM存储:硬盘等永久存储空间


六,java常用集合总结

1、线程安全 

线程安全就是说多线程访问同一代码,不会产生不确定的结果。

List类和Set类是Collection集合接口的子接口。
Set子接口:无序,不允许重复。
List子接口:有序,可以有重复元素。
Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 
List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变。 
Set和List具体子类: 
Set 
|————HashSet:以哈希表的形式存放元素,插入删除速度很快。 
List 
|————ArrayList:动态数组 
|————LinkedList:链表、队列、堆栈。
Set和List具体子类: 
Set 
|————HashSet:以哈希表的形式存放元素,插入删除速度很快。 
List 
|————ArrayList:动态数组 
|————LinkedList:链表、队列、堆栈。
List 
|————ArrayList:动态数组 
|————LinkedList:链表、队列、堆栈。
Vector是一种老的动态数组,是线程同步的,效率很低,一般不赞成使用。
a.HashMap去掉了HashTable的contains方法,但是加上了containsValue()和containsKey()方法。
b.HashTable同步的,而HashMap是非同步的,效率上比HashTable要高。
c.HashMap允许空键值,而HashTable不允许。
LinkedList、ArrayList、HashSet是非线程安全的,Vector是线程安全的;
HashMap是非线程安全的,HashTable是线程安全的;
StringBuilder是非线程安全的,StringBuffer是线程安全的。
对于查找和删除较为频繁,且元素数量较多的应用,Set或Map是更好的选择;
ArrayList适用于通过为位置来读取元素的场景;
LinkedList 适用于要头尾操作或插入指定位置的场景;
Vector 适用于要线程安全的ArrayList的场景;
Stack 适用于线程安全的LIFO场景;
HashSet 适用于对排序没有要求的非重复元素的存放;
TreeSet 适用于要排序的非重复元素的存放;
HashMap 适用于大部分key-value的存取场景;
TreeMap 适用于需排序存放的key-value场景。

2、List类和Set类

Set和List对比: 

Array和java.util.Vector 

3、HashMap和HashTable

4、线程安全集合类与非线程安全集合类 

5、集合适用场景



七,JAVA通过调用数据库函数调用存储过程

下面将举一个通过数据库函数来调用存储过程:

创建数据库函数存储过程

复制代码
CREATE OR REPLACE FUNCTION stu_proc ( v_id IN NUMBER) RETURN VARCHAR2 IS v_name VARCHAR2(20);BEGIN SELECT o.sname INTO v_name FROM student o WHERE o.id=v_id; RETURN v_name;EXCEPTION WHEN OTHERS THEN RETURN '数据未找到';END;
复制代码

               

JAVA通过调用数据库函数调用存储过程

复制代码
package com.ljq.test;import java.sql.CallableStatement;import java.sql.Connection;import java.sql.SQLException;import java.sql.Types;public class ProceTest { public static void main(String[] args) throws Exception { Connection conn = null; CallableStatement statement = null; //?表示函数return的值, stu_proc是数据库函数名 //存储过程的out和in都是以参数传进,这就是函数和存储过程的区别之一 String sql = "{?=call stu_proc(?)}"; try { conn = ConnUtils.getConnection(); statement = conn.prepareCall(sql); statement.registerOutParameter(1, Types.VARCHAR); statement.setInt(2, 36); statement.execute(); //具体值或数据未找到 String msg=statement.getString(1); System.out.println(msg); } catch (SQLException e) { e.printStackTrace(); } finally { ConnUtils.free(null, statement, conn); } }}





0 0
原创粉丝点击