linux 3.6 启动源码分析(一)

来源:互联网 发布:淘宝手机端图片不清晰 编辑:程序博客网 时间:2024/06/06 00:50

作为需要和硬件打交道的工程师来说,比较关注的是驱动和CPU初始化这一块。所以我沿着启动的路线,重点学习一下和硬件相关的代码。就从linux解压的入口说起。学习阶段,基本是参考大神文章http://blog.chinaunix.net/uid/20543672/cid-6411-list-7.html所写。

linux自解压完成后就跳转到了解压后的内核(也就是vmlinux的bin版本Image),具体的入口可以在arch/arm/kernel/vmlinux.lds.S(最终的链接脚本是通过这个文件产生的)中获得:

这个入口在arch/arm/kernel/head.S中,这个文件就是Linux内核真正启动的地方,是初始化部分的开始,用汇编写成。他必须为后面的C代码做好准备

1./*2.  * linux/arch/arm/kernel/head.S3.  *4.  * Copyright (C) 1994-2002 Russell King5.  * Copyright (c) 2003 ARM Limited6.  * All Rights Reserved7.  *8.  * This program is free software; you can redistribute it and/or modify9.  * it under the terms of the GNU General Public License version 2 as10.  * published by the Free Software Foundation.11.  *12.  * 所有32-bit CPU的内核启动代码13.  */14. #include <linux/linkage.h>15. #include <linux/init.h>16. 17. #include <asm/assembler.h>18. #include <asm/domain.h>19. #include <asm/ptrace.h>20. #include <asm/asm-offsets.h>21. #include <asm/memory.h>22. #include <asm/thread_info.h>23. #include <asm/system.h>24. 25. #ifdef CONFIG_DEBUG_LL26. #include <mach/debug-macro.S>27. #endif28. 29. /*30.  * swapper_pg_dir 是初始页表的虚拟地址.31.  * 我们将页表放在KERNEL_RAM_VADDR以下16K的空间中. 因此我们必须保证32.  * KERNEL_RAM_VADDR已经被正常设置.当前, 我们期望的是33.  * 这个地址的最后16 bits为0x8000, 但我们或许可以放宽这项限制到34.  * KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.35.  */36. #define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)37. #if (KERNEL_RAM_VADDR & 0xffff) != 0x800038. #error KERNEL_RAM_VADDR must start at 0xXXXX800039. #endif40. 41.     .globl    swapper_pg_dir42.     .equ    swapper_pg_dir, KERNEL_RAM_VADDR - 0x400043. 44. /*45.  * TEXT_OFFSET 是内核代码(解压后)相对于RAM起始的偏移.46.  * 而#TEXT_OFFSET - 0x4000就是页表相对于RAM起始的偏移.47.  * 这个宏的作用是将phys(RAM的启示地址)加上页表的偏移,48.  * 而得到页表的起始物理地址49.  */50.     .macro    pgtbl, rd, phys51.     add    \rd, \phys, #TEXT_OFFSET - 0x400052.     .endm53. 54. #ifdef CONFIG_XIP_KERNEL55. #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)56. #define KERNEL_END    _edata_loc57. #else58. #define KERNEL_START    KERNEL_RAM_VADDR59. #define KERNEL_END    _end60. #endif61. 62. /*63.  * 内核启动入口点.64.  * ---------------------------65.  *66.  * 这个入口正常情况下是在解压完成后被调用的.67.  * 调用条件: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,68.  * r1 = machine nr, r2 = atags or dtb pointer.69.  * 这些条件在解压完成后会被逐一满足,然后才跳转过来。70.  *71.  * 这些代码大多数是位置无关的, 如果你的内核入口地址在连接时确定为72.  * 0xc0008000, 你调用此函数的物理地址就是 __pa(0xc0008000).73.  *74.  * 完整的machineID列表,请参见 linux/arch/arm/tools/mach-types75.  *76.  * 我们尽量让代码简洁; 不在此处添加任何设备特定的代码77.  * - 这些特定的初始化代码是boot loader的工作(或在极端情况下,78.  * 有充分理由的情况下, 可以由zImage完成)。79.  */80.     __HEAD81. ENTRY(stext)82.     setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ CPU模式设置宏83.                                                    @ (进入svc模式并且关闭中断)84.     mrc    p15, 0, r9, c0, c0                       @ 获取处理器id-->r985.     bl    __lookup_processor_type                   @ 返回r5=procinfo r9=cpuid86.     movs    r10, r5                                 @ r10=r5,并可以检测r5=0?注意当前r10的值87.  THUMB( it    eq )            @ force fixup-able long branch encoding88.     beq    __error_p            @ yes, error 'p'如果r5=0,则内核处理器不匹配,出错~死循环89. 90.     /*91.      * 获取RAM的起始物理地址,并保存于 r8 = phys_offset92.      * XIP内核与普通在RAM中运行的内核不同93.      * (1)CONFIG_XIP_KERNEL94.      *         通过运行时计算????95.      * (2)正常RAM中运行的内核96.      *         通过编译时确定(PLAT_PHYS_OFFSET 一般在arch/arm/mach-xxx/include/mach/memory.h定义)97.      *        98.      */99. #ifndef CONFIG_XIP_KERNEL100.     adr    r3, 2f101.     ldmia    r3, {r4, r8}102.     sub    r4, r3, r4            @ (PHYS_OFFSET - PAGE_OFFSET)103.     add    r8, r8, r4            @ PHYS_OFFSET104. #else105.     ldr    r8, =PLAT_PHYS_OFFSET106. #endif107. 108.     /*109.      * r1 = machine no, r2 = atags or dtb,110.      * r8 = phys_offset, r9 = cpuid, r10 = procinfo111.      */112.     bl    __vet_atags            @ 判断r2(内核启动参数)指针的有效性113. #ifdef CONFIG_SMP_ON_UP114.     bl    __fixup_smp            @ ???如果运行SMP内核在单处理器系统中启动,做适当调整115. #endif116. #ifdef CONFIG_ARM_PATCH_PHYS_VIRT117.     bl    __fixup_pv_table    @ ????根据内核在内存中的位置修正物理地址与虚拟地址的转换机制118. #endif119.     bl    __create_page_tables    @ 初始化页表!120. 121.     /*122.      * 以下使用位置无关的方法调用的是CPU特定代码。123.      * 详情请见arch/arm/mm/proc-*.S124.      * r10 = xxx_proc_info 结构体的基地址(在上面__lookup_processor_type函数中选中的)125.      * 返回时, CPU 已经为 MMU 的启动做好了准备,126.      * 且 r0 保存着CPU控制寄存器的值.127.      */128.     ldr    r13, =__mmap_switched                @ 在MMU启动之后跳入的第一个虚拟地址129.     adr    lr, BSYM(1f)                        @ 设置返回的地址(PIC)130.     mov    r8, r4                                @ 将swapper_pg_dir的物理地址放入r8,131.                                             @ 以备__enable_mmu中将其放入TTBR1132.  ARM(    add    pc, r10, #PROCINFO_INITFUNC    )    @ 跳入构架相关的初始化处理器函数(例如A8的是__v7_setup)133.  THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )    @主要目的只配置CP15(包括缓存配置)134.  THUMB(    mov    pc, r12                )135. 1:    b    __enable_mmu                        @ 启动MMU136. ENDPROC(stext)137.     .ltorg138. #ifndef CONFIG_XIP_KERNEL139. 2:    .long    .140.     .long    PAGE_OFFSET141. #endif142. 143. /*144.  * 创建初始化页表.我们只创建最基本的页表,145.  * 以满足内核运行的需要,146.  * 这通常意味着仅映射内核代码本身.147.  *148.  * r8 = phys_offset, r9 = cpuid, r10 = procinfo149.  *150.  * 返回:151.  *r0, r3, r5-r7 被篡改152.  *r4 = 页表物理地址153.  */154. __create_page_tables:155.     pgtbl    r4, r8                @ 现在r4 = 页表的起始物理地址156. 157.     /*158.      * 清零16K的一级初始页表区159.      * 这些页表在内核自解压时被设置过160.      * (此时MMU已关闭)161.      */162.     mov    r0, r4163.     mov    r3, #0164.     add    r6, r0, #0x4000165. 1:    str    r3, [r0], #4166.     str    r3, [r0], #4167.     str    r3, [r0], #4168.     str    r3, [r0], #4169.     teq    r0, r6170.     bne    1b171. 172.     /*173.      * 获取节描述符的默认配置(除节基址外的其他配置)174.      * 这个数据依构架而不同,数据是用汇编文件配置的:175.      * arch/arm/mm/proc-xxx.S176.      * (此时MMU已关闭)177.      */178.     ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ 获取mm_mmuflags(节描述符默认配置),保存于r7179. 180.     /*181.      * 创建特定映射,以满足__enable_mmu的需求。182.      * 此特定映射将被paging_init()删除。183.      * 184.      * 其实这个特定的映射就是仅映射__enable_mmu功能函数区的页表185.      * 以保证在启用mmu时代码的正确执行--1:1映射(物理地址=虚拟地址)186.      */187.     adr    r0, __enable_mmu_loc188.     ldmia    r0, {r3, r5, r6}189.     sub    r0, r0, r3            @ 获取编译时确定的虚拟地址到当前物理地址的偏移190.     add    r5, r5, r0            @ __enable_mmu的当前物理地址191.     add    r6, r6, r0            @ __enable_mmu_end的当前物理地址192.     mov    r5, r5, lsr #20        @ __enable_mmu的节基址193.     mov    r6, r6, lsr #20        @ __enable_mmu_end的节基址194. 195. 1:    orr    r3, r7, r5, lsl #20        @ 生成节描述符:flags + 节基址196.     str    r3, [r4, r5, lsl #2]    @ 设置节描述符,1:1映射(物理地址=虚拟地址)197.     teq    r5, r6                    @ 完成映射?(理论上一次就够了,这个函数应该不会大于1M吧~)198.     addne    r5, r5, #1            @ r5 = 下一节的基址199.     bne    1b200. 201.     /*202.      * 现在创建内核的逻辑映射区页表(节映射)203.      * 创建范围:KERNEL_START---KERNEL_END204.      * KERNEL_START:内核最终运行的虚拟地址205.      * KERNEL_END:内核代码结束的虚拟地址(bss段之后,但XIP不是)206.      */207.     mov    r3, pc                @ 获取当前物理地址208.     mov    r3, r3, lsr #20        @ r3 = 当前物理地址的节基址209.     orr    r3, r7, r3, lsl #20    @ r3 为当前物理地址的节描述符210.     /*211.      * 下面是为了确定页表项的入口地址212.      * 其实页表入口项的偏移就反应了对应的虚拟地址的高位213.      *214.      * 由于ARM指令集的8bit位图问题,只能分两次得到215.      * KERNEL_START:内核最终运行的虚拟地址216.      *217.      */218.     add    r0, r4, #(KERNEL_START & 0xff000000) >> 18219.     str    r3, [r0, #(KERNEL_START & 0x00f00000) >> 18]!220.     ldr    r6, =(KERNEL_END - 1)221.     add    r0, r0, #4222.     add    r6, r4, r6, lsr #18    @ r6 = 内核逻辑映射结束的节基址223. 1:    cmp    r0, r6224.     add    r3, r3, #1 << 20    @ 生成节描述符(只需做基址递增)225.     strls    r3, [r0], #4    @ 设置节描述符226.     bls    1b227. 228. #ifdef CONFIG_XIP_KERNEL229.     /*230.      * 如果是XIP技术的内核,上面的映射只能映射内核代码和只读数据部分231.      * 这里我们再映射一些RAM来作为 .data and .bss 空间.232.      */233.     add    r3, r8, #TEXT_OFFSET234.     orr    r3, r3, r7            @ 生成节描述符:flags + 节基址235.     add    r0, r4, #(KERNEL_RAM_VADDR & 0xff000000) >> 18236.     str    r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!237.     ldr    r6, =(_end - 1)238.     add    r0, r0, #4239.     add    r6, r4, r6, lsr #18240. 1:    cmp    r0, r6241.     add    r3, r3, #1 << 20242.     strls    r3, [r0], #4243.     bls    1b244. #endif245. 246.     /*247.      * 然后映射启动参数区(现在r2中的atags物理地址) 248.      * 或者249.      * 如果启动参数区的虚拟地址没有确定(或者无效),则会映射RAM的头1MB.250.      */251.     mov    r0, r2, lsr #20252.     movs    r0, r0, lsl #20253.     moveq    r0, r8                @ 如果atags指针无效,则r0 = r8(映射RAM的头1MB)254.     sub    r3, r0, r8255.     add    r3, r3, #PAGE_OFFSET    @ 转换为虚拟地址256.     add    r3, r4, r3, lsr #18        @ 确定页表项(节描述符)入口地址257.     orr    r6, r7, r0                @ 生成节描述符258.     str    r6, [r3]                @ 设置节描述符259. 260.     /*261.      * 下面是调试信息的输出函数区262.      * 这里做了IO内存空间的节映射263.      */264. #ifdef CONFIG_DEBUG_LL265. #ifndef CONFIG_DEBUG_ICEDCC266.     /*267.      * 为串口调试映射IO内存空间(将串口IO内存之上的所有地址都映射了)268.      * 这允许调试信息(在paging_init之前)从串口控制台输出269.      * 270.      */271.     addruart r7, r3        @ 宏代码,位于arch/arm/mach-xxx/include/mach/debug-macro.S272.                         @ 作用是将串口控制寄存器的基址放入r7(物理地址)和r3(虚拟地址)273.     mov    r3, r3, lsr #20274.     mov    r3, r3, lsl #2275. 276.     add    r0, r4, r3        @ r0为串口IO内存映射页表项的入口地址277.     rsb    r3, r3, #0x4000            @ 16K(PTRS_PER_PGD*sizeof(long))-r3278.     cmp    r3, #0x0800            @ limit to 512MB,入口地址有效性检查(只能在最后#0x0800内)279.     movhi    r3, #0x0800        @ 也就是说虚拟地址被限制在3.5G以上280.     add    r6, r0, r3            @ r6为页表结束地址281.     mov    r3, r7, lsr #20282.     ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags283.     orr    r3, r7, r3, lsl #20    @ 生成节描述符284. 1:    str    r3, [r0], #4285.     add    r3, r3, #1 << 20286.     teq    r0, r6287.     bne    1b288. 289. #else /* CONFIG_DEBUG_ICEDCC */290.     /* 我们无需任何串口调试映射 for ICEDCC */291.     ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags292. #endif /* !CONFIG_DEBUG_ICEDCC */293. 294. #if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)295.     /*296.      * 如果我们在使用 NetWinder 或 CATS,我们也需要为调试信息映射297.      * 16550-type 串口298.      */299.     add    r0, r4, #0xff000000 >> 18300.     orr    r3, r7, #0x7c000000301.     str    r3, [r0]302. #endif303. #ifdef CONFIG_ARCH_RPC304.     /*305.      * Map in screen at 0x02000000 & SCREEN2_BASE306.      * Similar reasons here - for debug. This is307.      * only for Acorn RiscPC architectures.308.      */309.     add    r0, r4, #0x02000000 >> 18310.     orr    r3, r7, #0x02000000311.     str    r3, [r0]312.     add    r0, r4, #0xd8000000 >> 18313.     str    r3, [r0]314. #endif315. #endif316.     mov    pc, lr        @页表创建结束,返回317. ENDPROC(__create_page_tables)318.     .ltorg319.     .align320. __enable_mmu_loc:321.     .long    .322.     .long    __enable_mmu323.     .long    __enable_mmu_end324. 325. #if defined(CONFIG_SMP)326.     __CPUINIT327. ENTRY(secondary_startup)328.     /*329.      * Common entry point for secondary CPUs.330.      *331.      * Ensure that we're in SVC mode, and IRQs are disabled. Lookup332.      * the processor type - there is no need to check the machine type333.      * as it has already been validated by the primary processor.334.      */335.     setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9336.     mrc    p15, 0, r9, c0, c0        @ get processor id337.     bl    __lookup_processor_type338.     movs    r10, r5                @ invalid processor?339.     moveq    r0, #'p'            @ yes, error 'p'340.  THUMB( it    eq )        @ force fixup-able long branch encoding341.     beq    __error_p342. 343.     /*344.      * Use the page tables supplied from __cpu_up.345.      */346.     adr    r4, __secondary_data347.     ldmia    r4, {r5, r7, r12}        @ address to jump to after348.     sub    lr, r4, r5            @ mmu has been enabled349.     ldr    r4, [r7, lr]            @ get secondary_data.pgdir350.     add    r7, r7, #4351.     ldr    r8, [r7, lr]            @ get secondary_data.swapper_pg_dir352.     adr    lr, BSYM(__enable_mmu)        @ return address353.     mov    r13, r12            @ __secondary_switched address354.  ARM(    add    pc, r10, #PROCINFO_INITFUNC    ) @ initialise processor355.                          @ (return control reg)356.  THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )357.  THUMB(    mov    pc, r12                )358. ENDPROC(secondary_startup)359. 360.     /*361.      * r6 = &secondary_data362.      */363. ENTRY(__secondary_switched)364.     ldr    sp, [r7, #4]            @ get secondary_data.stack365.     mov    fp, #0366.     b    secondary_start_kernel367. ENDPROC(__secondary_switched)368. 369.     .align370. 371.     .type    __secondary_data, %object372. __secondary_data:373.     .long    .374.     .long    secondary_data375.     .long    __secondary_switched376. #endif /* defined(CONFIG_SMP) */377. 378. 379. 380. /*381.  * 在最后启动MMU前,设置一些常用位 Essentially382.  * 其实,这里只是加载了页表指针和域访问控制数据寄存器383.  * 384.  *385.  *r0 = cp#15 control register386.  * r1 = machine ID387.  * r2 = atags or dtb pointer388.  * r4 = page table pointer389.  * r9 = processor ID390.  * r13 = 最后要跳入的虚拟地址391.  */392. __enable_mmu:393. #ifdef CONFIG_ALIGNMENT_TRAP394.     orr    r0, r0, #CR_A395. #else396.     bic    r0, r0, #CR_A397. #endif398. #ifdef CONFIG_CPU_DCACHE_DISABLE399.     bic    r0, r0, #CR_C400. #endif401. #ifdef CONFIG_CPU_BPREDICT_DISABLE402.     bic    r0, r0, #CR_Z403. #endif404. #ifdef CONFIG_CPU_ICACHE_DISABLE405.     bic    r0, r0, #CR_I406. #endif407.     mov    r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \408.          domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \409.          domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \410.          domain_val(DOMAIN_IO, DOMAIN_CLIENT))    @设置域访问控制数据411.     mcr    p15, 0, r5, c3, c0, 0        @ 载入域访问控制数据到DACR412.     mcr    p15, 0, r4, c2, c0, 0        @ 载入页表基址到TTBR0413.     b    __turn_mmu_on                @ 开启MMU414. ENDPROC(__enable_mmu)415. 416. /*417.  * 使能 MMU.这完全改变了可见的内存地址空间结构。418.  * 您将无法通过这里跟踪执行。419.  * 如果你已对此进行探究, *请*在向邮件列表发送另一个新帖之前,420.  * 检查linux-arm-kernel的邮件列表归档421.  *422.  *r0 = cp#15 control register423.  * r1 = machine ID424.  * r2 = atags or dtb pointer425.  * r9 = processor ID426.  * r13 = 最后要跳入的*虚拟*地址427.  *428.  * 其他寄存器依赖上面的调用函数429.  */430.     .align    5431. __turn_mmu_on:432.     mov    r0, r0433.     mcr    p15, 0, r0, c1, c0, 0        @ 设置cp#15控制寄存器(启用MMU)434.     mrc    p15, 0, r3, c0, c0, 0        @ read id reg435.     mov    r3, r3436.     mov    r3, r13                        @ r3中装入最后要跳入的*虚拟*地址437.     mov    pc, r3                        @ 跳转到__mmap_switched438. __enable_mmu_end:439. ENDPROC(__turn_mmu_on)440. 441. 442. #ifdef CONFIG_SMP_ON_UP443.     __INIT444. __fixup_smp:445.     and    r3, r9, #0x000f0000    @ architecture version446.     teq    r3, #0x000f0000        @ CPU ID supported?447.     bne    __fixup_smp_on_up    @ no, assume UP448. 449.     bic    r3, r9, #0x00ff0000450.     bic    r3, r3, #0x0000000f    @ mask 0xff00fff0451.     mov    r4, #0x41000000452.     orr    r4, r4, #0x0000b000453.     orr    r4, r4, #0x00000020    @ val 0x4100b020454.     teq    r3, r4            @ ARM 11MPCore?455.     moveq    pc, lr            @ yes, assume SMP456. 457.     mrc    p15, 0, r0, c0, c0, 5    @ read MPIDR458.     and    r0, r0, #0xc0000000    @ multiprocessing extensions and459.     teq    r0, #0x80000000        @ not part of a uniprocessor system?460.     moveq    pc, lr            @ yes, assume SMP461. 462. __fixup_smp_on_up:463.     adr    r0, 1f464.     ldmia    r0, {r3 - r5}465.     sub    r3, r0, r3466.     add    r4, r4, r3467.     add    r5, r5, r3468.     b    __do_fixup_smp_on_up469. ENDPROC(__fixup_smp)470. 471.     .align472. 1:    .word    .473.     .word    __smpalt_begin474.     .word    __smpalt_end475. 476.     .pushsection .data477.     .globl    smp_on_up478. smp_on_up:479.     ALT_SMP(.long    1)480.     ALT_UP(.long    0)481.     .popsection482. #endif483. 484.     .text485. __do_fixup_smp_on_up:486.     cmp    r4, r5487.     movhs    pc, lr488.     ldmia     {r0, r6}489.  ARM(    str    r6, [r0, r3]    )490.  THUMB(    add    r0, r0, r3    )491. #ifdef __ARMEB__492.  THUMB(    mov    r6, r6, ror #16    )    @ Convert word order for big-endian.493. #endif494.  THUMB(    strh    r6, [r0], #2    )    @ For Thumb-2, store as two halfwords495.  THUMB(    mov    r6, r6, lsr #16    )    @ to be robust against misaligned r3.496.  THUMB(    strh    r6, [r0]    )497.     b    __do_fixup_smp_on_up498. ENDPROC(__do_fixup_smp_on_up)499. 500. ENTRY(fixup_smp)501.     stmfd     {r4 - r6, lr}502.     mov    r4, r0503.     add    r5, r0, r1504.     mov    r3, #0505.     bl    __do_fixup_smp_on_up506.     ldmfd     {r4 - r6, pc}507. ENDPROC(fixup_smp)508. 509. #ifdef CONFIG_ARM_PATCH_PHYS_VIRT510. 511. /* __fixup_pv_table - patch the stub instructions with the delta between512.  * PHYS_OFFSET and PAGE_OFFSET, which is assumed to be 16MiB aligned and513.  * can be expressed by an immediate shifter operand. The stub instruction514.  * has a form of '(add|sub) rd, rn, #imm'.515.  */516.     __HEAD517. __fixup_pv_table:518.     adr    r0, 1f519.     ldmia    r0, {r3-r5, r7}520.     sub    r3, r0, r3    @ PHYS_OFFSET - PAGE_OFFSET521.     add    r4, r4, r3    @ adjust table start address522.     add    r5, r5, r3    @ adjust table end address523.     add    r7, r7, r3    @ adjust __pv_phys_offset address524.     str    r8, [r7]    @ save computed PHYS_OFFSET to __pv_phys_offset525. #ifndef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT526.     mov    r6, r3, lsr #24    @ constant for add/sub instructions527.     teq    r3, r6, lsl #24 @ must be 16MiB aligned528. #else529.     mov    r6, r3, lsr #16    @ constant for add/sub instructions530.     teq    r3, r6, lsl #16    @ must be 64kiB aligned531. #endif532. THUMB(    it    ne        @ cross section branch )533.     bne    __error534.     str    r6, [r7, #4]    @ save to __pv_offset535.     b    __fixup_a_pv_table536. ENDPROC(__fixup_pv_table)537. 538.     .align539. 1:    .long    .540.     .long    __pv_table_begin541.     .long    __pv_table_end542. 2:    .long    __pv_phys_offset543. 544.     .text545. __fixup_a_pv_table:546. #ifdef CONFIG_THUMB2_KERNEL547. #ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT548.     lsls    r0, r6, #24549.     lsr    r6, #8550.     beq    1f551.     clz    r7, r0552.     lsr    r0, #24553.     lsl    r0, r7554.     bic    r0, 0x0080555.     lsrs    r7, #1556.     orrcs r0, #0x0080557.     orr    r0, r0, r7, lsl #12558. #endif559. 1:    lsls    r6, #24560.     beq    4f561.     clz    r7, r6562.     lsr    r6, #24563.     lsl    r6, r7564.     bic    r6, #0x0080565.     lsrs    r7, #1566.     orrcs    r6, #0x0080567.     orr    r6, r6, r7, lsl #12568.     orr    r6, #0x4000569.     b    4f570. 2:    @ at this point the C flag is always clear571.     add r7, r3572. #ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT573.     ldrh    ip, [r7]574.     tst    ip, 0x0400    @ the i bit tells us LS or MS byte575.     beq    3f576.     cmp    r0, #0        @ set C flag, and ...577.     biceq    ip, 0x0400    @ immediate zero value has a special encoding578.     streqh    ip, [r7]    @ that requires the i bit cleared579. #endif580. 3:    ldrh    ip, [r7, #2]581.     and    ip, 0x8f00582.     orrcc    ip, r6    @ mask in offset bits 31-24583.     orrcs    ip, r0    @ mask in offset bits 23-16584.     strh    ip, [r7, #2]585. 4:    cmp    r4, r5586.     ldrcc    r7, [r4], #4    @ use branch for delay slot587.     bcc    2b588.     bx    lr589. #else590. #ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT591.     and    r0, r6, #255    @ offset bits 23-16592.     mov    r6, r6, lsr #8    @ offset bits 31-24593. #else594.     mov    r0, #0        @ just in case...595. #endif596.     b    3f597. 2:    ldr    ip, [r7, r3]598.     bic    ip, ip, #0x000000ff599.     tst    ip, #0x400    @ rotate shift tells us LS or MS byte600.     orrne    ip, ip, r6    @ mask in offset bits 31-24601.     orreq    ip, ip, r0    @ mask in offset bits 23-16602.     str    ip, [r7, r3]603. 3:    cmp    r4, r5604.     ldrcc    r7, [r4], #4    @ use branch for delay slot605.     bcc    2b606.     mov    pc, lr607. #endif608. ENDPROC(__fixup_a_pv_table)609. 610. ENTRY(fixup_pv_table)611.     stmfd     {r4 - r7, lr}612.     ldr    r2, 2f            @ get address of __pv_phys_offset613.     mov    r3, #0            @ no offset614.     mov    r4, r0            @ r0 = table start615.     add    r5, r0, r1        @ r1 = table size616.     ldr    r6, [r2, #4]        @ get __pv_offset617.     bl    __fixup_a_pv_table618.     ldmfd     {r4 - r7, pc}619. ENDPROC(fixup_pv_table)620. 621.     .align622. 2:    .long    __pv_phys_offset623. 624.     .data625.     .globl    __pv_phys_offset626.     .type    __pv_phys_offset, %object627. __pv_phys_offset:628.     .long    0629.     .size    __pv_phys_offset, . - __pv_phys_offset630. __pv_offset:631.     .long    0632. #endif633. 634. #include "head-common.S"


arch/arm/kernel/head-common.S

1./*2.  * linux/arch/arm/kernel/head-common.S3.  *4.  * Copyright (C) 1994-2002 Russell King5.  * Copyright (c) 2003 ARM Limited6.  * All Rights Reserved7.  *8.  * This program is free software; you can redistribute it and/or modify9.  * it under the terms of the GNU General Public License version 2 as10.  * published by the Free Software Foundation.11.  *12.  */13. 14. #define ATAG_CORE 0x5441000115. #define ATAG_CORE_SIZE ((2*4 + 3*4) >> 2)16. #define ATAG_CORE_SIZE_EMPTY ((2*4) >> 2)17. 18. #ifdef CONFIG_CPU_BIG_ENDIAN19. #define OF_DT_MAGIC 0xd00dfeed20. #else21. #define OF_DT_MAGIC 0xedfe0dd0 /* 0xd00dfeed in big-endian */22. #endif23. 24. /*25.  * 异常处理.一些我们无法处理的错误.26.  * 我们应当告诉用户(这些错误信息),但因为我们甚至无法保证是在正确的架构上运行,27.  * 所以我们什么都不做(死循环)。28.  *29.  * 如果 CONFIG_DEBUG_LL 被设置,我们试图打印出错误信息,30.  * 并希望这可以对我们有帮助 (例如这对bootloader没有提供适当的处理器ID31.  * 是有帮助的).32.  */33.     __HEAD34. 35. /* 确定r2(内核启动参数)指针的有效性。 The heuristic 要求36.  * 是4Byte对齐的、在物理内存的头16K中,且以ATAG_CORE标记开头。37.  * 如果选择了CONFIG_OF_FLATTREE,dtb指针也是可以接受的.38.  * 39.  * 在这个函数的未来版本中 可能会对物理地址的要求更为宽松,40.  * 且如果有必要的话,可能可以移动ATAGS数据块.41.  *42.  * 返回:43.  *r2 可能是有效的 atags 指针, 有效的 dtb 指针,或者044.  * r5, r6 被篡改45.  */46. __vet_atags:47.     tst    r2, #0x3            @ 是否4Byte对齐?48.     bne    1f                    @ 不是则认为指针无效,返回49. 50.     ldr    r5, [r2, #0]        @获取r2指向的前4Byte,用于下面测试51. #ifdef CONFIG_OF_FLATTREE52.     ldr    r6, =OF_DT_MAGIC        @ is it a DTB?53.     cmp    r5, r654.     beq    2f55. #endif56. 57.     /* 内核启动参数块的规范是:58.      * (wait for updata)59.      */60.     cmp    r5, #ATAG_CORE_SIZE        @ 第一个tag是ATAG_CORE吗?测试的是tag_header中的size61.                                 @ 如果为ATAG_CORE,那么必为ATAG_CORE_SIZE62.     cmpne    r5, #ATAG_CORE_SIZE_EMPTY    @ 如果第一个tag的tag_header中的size为ATAG_CORE_SIZE_EMPTY63.                                         @ 说明此处也有atags64.     bne    1f65.     ldr    r5, [r2, #4]            @ 第一个tag_header的tag(魔数)66.     ldr    r6, =ATAG_CORE            @ 获取ATAG_CORE的魔数67.     cmp    r5, r6                    @ 判断第一个tag是否为ATAG_CORE68.     bne    1f                        @ 不是则认为指针无效,返回69. 70. 2:    mov    pc, lr                @ atag/dtb 指针有效71. 72. 1:    mov    r2, #073.     mov    pc, lr74. ENDPROC(__vet_atags)75. 76. /*77.  * 以下的代码段是在MMU开启的状态下执行的,78.  * 而且使用的是绝对地址; 这不是位置无关代码.79.  *80.  *r0 = cp#15 控制寄存器值81.  *r1 = machine ID82.  * r2 = atags/dtb pointer83.  * r9 = processor ID84.  */85.     __INIT86. __mmap_switched:87.     adr    r3, __mmap_switched_data88. 89.     ldmia     {r4, r5, r6, r7}90.     cmp    r4, r5                @ 如果有必要,拷贝数据段。91.                             @ 对比__data_loc和_sdata92.                             @ __data_loc是数据段在内核代码映像中的存储位置93.                             @ _sdata是数据段的链接位置(在内存中的位置)94.                             @ 如果是XIP技术的内核,这两个数据肯定不同95. 1:    cmpne    r5, r6            @ 检测数据是否拷贝完成96.     ldrne    fp, [r4], #497.     strne    fp, [r5], #498.     bne    1b99. 100.     mov    fp, #0                @ 清零 BSS 段(and zero fp)101. 1:    cmp    r6, r7                @ 检测是否完成102.     strcc    fp, [r6],#4103.     bcc    1b104. 105.     /* 这里将需要的数据从寄存器中转移到全局变量中,106.      * 因为最后会跳入C代码,寄存器会被使用。107.      */108.  ARM(    ldmia    r3, {r4, r5, r6, r7, sp})109.  THUMB(    ldmia    r3, {r4, r5, r6, r7}    )110.  THUMB(    ldr    sp, [r3, #16]        )111.     str    r9, [r4]            @ 保存 processor ID到全局变量processor_id112.     str    r1, [r5]            @ 保存 machine type到全局变量__machine_arch_type113.     str    r2, [r6]            @ 保存 atags指针到全局变量__atags_pointer114.     bic    r4, r0, #CR_A            @ 清除cp15 控制寄存器值的 'A' bit(禁用对齐错误检查)115.     stmia    r7, {r0, r4}            @ 保存控制寄存器值到全局变量cr_alignment(在arch/arm/kernel/entry-armv.S)116.     b    start_kernel        @ 跳入C代码(init/main.c)117. ENDPROC(__mmap_switched)118. 119.     .align    2120.     .type    __mmap_switched_data, %object121. __mmap_switched_data:122.     .long    __data_loc            @ r4123.     .long    _sdata                @ r5124.     .long    __bss_start            @ r6125.     .long    _end                @ r7126.     .long    processor_id            @ r4127.     .long    __machine_arch_type        @ r5128.     .long    __atags_pointer            @ r6129.     .long    cr_alignment            @ r7130.     .long    init_thread_union + THREAD_START_SP @ sp131.     .size    __mmap_switched_data, . - __mmap_switched_data132. 133. /*134.  * 这里提供一个 C-API 版本的 __lookup_processor_type135.  */136. ENTRY(lookup_processor_type)137.     stmfd     {r4 - r6, r9, lr}138.     mov    r9, r0139.     bl    __lookup_processor_type140.     mov    r0, r5141.     ldmfd     {r4 - r6, r9, pc}142. ENDPROC(lookup_processor_type)143. 144. /*145.  * 读取处理器ID寄存器 (CP#15, CR0), 并且查找编译时确定的处理器146.  * 支持列表.注意:我们不能对__proc_info使用绝对地址,147.  * 因为我们还没有重新初始化页表(MMU已关闭,之前是解压时使用的1:1映射)。148.  * (我们不在正确的地址空间:内核是按虚拟地址(0xc00008000)编译的,149.  * 而现在我们运行在MMU关闭的情况下)。150.  * 我们必须计算偏移量。151.  *152.  *    r9 = cpuid153.  * Returns:154.  *    r3, r4, r6 被篡改155.  *    r5 = proc_info 指针(物理地址空间)156.  *    r9 = cpuid (保留)157.  */158.     __CPUINIT159. __lookup_processor_type:160.     adr    r3, __lookup_processor_type_data        @获取运行时的地址数据161.     ldmia    r3, {r4 - r6}    @获取编译时确定的地址数据(虚拟地址)162.     sub    r3, r3, r4            @ 获取地址偏移 virt&phys(r3)163.     add    r5, r5, r3            @ 将虚拟地址空间转换为物理地址空间164.     add    r6, r6, r3            @ r5=__proc_info_begin r6=__proc_info_end165. 1:    ldmia    r5, {r3, r4}    @ 获取proc_info_list结构体中的value, mask166.     and    r4, r4, r9            @ 利用掩码处理从CP15获取的处理器ID167.     teq    r3, r4                @ 对比编译时确定的处理器ID168.     beq    2f                    @ 若处理器ID匹配,返回169.     add    r5, r5, #PROC_INFO_SZ        @ 利用sizeof(proc_info_list)跳入下一个处理器ID的匹配170.     cmp    r5, r6                @ 是否已经处理完proc_info_list数据171.     blo    1b                    @ 如果还有proc_info_list数据,再次检查匹配172.     mov    r5, #0                @ 否则,编译的内核与此处理器不匹配,r5 = #0173. 2:    mov    pc, lr174. ENDPROC(__lookup_processor_type)175. 176. /*177.  * 参见 <asm/procinfo.h> 中关于 __proc_info 结构体的信息.178.  */179.     .align    2180.     .type    __lookup_processor_type_data, %object181. __lookup_processor_type_data:182.     .long    .183.     .long    __proc_info_begin184.     .long    __proc_info_end185.     .size    __lookup_processor_type_data, . - __lookup_processor_type_data186. 187. /*188.  * 处理器ID不匹配时的入口189.  * 如果启用了调试信息,会从consol打印提示信息190.  * 之后会进入__error的死循环191.  */192. __error_p:193. #ifdef CONFIG_DEBUG_LL194.     adr    r0, str_p1195.     bl    printascii196.     mov    r0, r9197.     bl    printhex8198.     adr    r0, str_p2199.     bl    printascii200.     b    __error201. str_p1:    .asciz    "\nError: unrecognized/unsupported processor variant (0x"202. str_p2:    .asciz    ").\n"203.     .align204. #endif205. ENDPROC(__error_p)206. 207. /*208.  * 出错时的死循环入口209.  */210. __error:211. #ifdef CONFIG_ARCH_RPC212. /*213.  * 出错时屏幕变红 - RiscPC only.214.  */215.     mov    r0, #0x02000000216.     mov    r3, #0x11217.     orr    r3, r3, r3, lsl #8218.     orr    r3, r3, r3, lsl #16219.     str    r3, [r0], #4220.     str    r3, [r0], #4221.     str    r3, [r0], #4222.     str    r3, [r0], #4223. #endif224. 1:    mov    r0, r0225.     b    1b226. ENDPROC(__error)


 

0 0
原创粉丝点击