机器学习算法与Python实践之(六)二分k均值聚类

来源:互联网 发布:oracle数据库工程师 编辑:程序博客网 时间:2024/05/17 07:30

机器学习算法与Python实践之(六)二分k均值聚类

zouxy09@qq.com

http://blog.csdn.net/zouxy09

 

       机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了。

       在上一个博文中,我们聊到了k-means算法。但k-means算法有个比较大的缺点就是对初始k个质心点的选取比较敏感。有人提出了一个二分k均值(bisecting k-means)算法,它的出现就是为了一定情况下解决这个问题的。也就是说它对初始的k个质心的选择不太敏感。那下面我们就来了解和实现下这个算法。

 

一、二分k均值(bisecting k-means)算法

       二分k均值(bisecting k-means)算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二。之后选择能最大程度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。以此进行下去,直到簇的数目等于用户给定的数目k为止。

       以上隐含着一个原则是:因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点月接近于它们的质心,聚类效果就越好。所以我们就需要对误差平方和最大的簇进行再一次的划分,因为误差平方和越大,表示该簇聚类越不好,越有可能是多个簇被当成一个簇了,所以我们首先需要对这个簇进行划分。

       二分k均值算法的伪代码如下:

***************************************************************

将所有数据点看成一个簇

当簇数目小于k时

       对每一个簇

              计算总误差

              在给定的簇上面进行k-均值聚类(k=2)

              计算将该簇一分为二后的总误差

       选择使得误差最小的那个簇进行划分操作

***************************************************************

 

二、Python实现

       我使用的Python是2.7.5版本的。附加的库有Numpy和Matplotlib。具体的安装和配置见前面的博文。在代码中已经有了比较详细的注释了。不知道有没有错误的地方,如果有,还望大家指正(每次的运行结果都有可能不同)。里面我写了个可视化结果的函数,但只能在二维的数据上面使用。直接贴代码:

biKmeans.py

################################################## kmeans: k-means cluster# Author : zouxy# Date   : 2013-12-25# HomePage : http://blog.csdn.net/zouxy09# Email  : zouxy09@qq.com#################################################from numpy import *import timeimport matplotlib.pyplot as plt# calculate Euclidean distancedef euclDistance(vector1, vector2):return sqrt(sum(power(vector2 - vector1, 2)))# init centroids with random samplesdef initCentroids(dataSet, k):numSamples, dim = dataSet.shapecentroids = zeros((k, dim))for i in range(k):index = int(random.uniform(0, numSamples))centroids[i, :] = dataSet[index, :]return centroids# k-means clusterdef kmeans(dataSet, k):numSamples = dataSet.shape[0]# first column stores which cluster this sample belongs to,# second column stores the error between this sample and its centroidclusterAssment = mat(zeros((numSamples, 2)))clusterChanged = True## step 1: init centroidscentroids = initCentroids(dataSet, k)while clusterChanged:clusterChanged = False## for each samplefor i in xrange(numSamples):minDist  = 100000.0minIndex = 0## for each centroid## step 2: find the centroid who is closestfor j in range(k):distance = euclDistance(centroids[j, :], dataSet[i, :])if distance < minDist:minDist  = distanceminIndex = j## step 3: update its clusterif clusterAssment[i, 0] != minIndex:clusterChanged = TrueclusterAssment[i, :] = minIndex, minDist**2## step 4: update centroidsfor j in range(k):pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]centroids[j, :] = mean(pointsInCluster, axis = 0)print 'Congratulations, cluster using k-means complete!'return centroids, clusterAssment# bisecting k-means clusterdef biKmeans(dataSet, k):numSamples = dataSet.shape[0]# first column stores which cluster this sample belongs to,# second column stores the error between this sample and its centroidclusterAssment = mat(zeros((numSamples, 2)))# step 1: the init cluster is the whole data setcentroid = mean(dataSet, axis = 0).tolist()[0]centList = [centroid]for i in xrange(numSamples):clusterAssment[i, 1] = euclDistance(mat(centroid), dataSet[i, :])**2while len(centList) < k:# min sum of square errorminSSE = 100000.0numCurrCluster = len(centList)# for each clusterfor i in range(numCurrCluster):# step 2: get samples in cluster ipointsInCurrCluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :]# step 3: cluster it to 2 sub-clusters using k-meanscentroids, splitClusterAssment = kmeans(pointsInCurrCluster, 2)# step 4: calculate the sum of square error after split this clustersplitSSE = sum(splitClusterAssment[:, 1])notSplitSSE = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1])currSplitSSE = splitSSE + notSplitSSE# step 5: find the best split cluster which has the min sum of square errorif currSplitSSE < minSSE:minSSE = currSplitSSEbestCentroidToSplit = ibestNewCentroids = centroids.copy()bestClusterAssment = splitClusterAssment.copy()# step 6: modify the cluster index for adding new clusterbestClusterAssment[nonzero(bestClusterAssment[:, 0].A == 1)[0], 0] = numCurrClusterbestClusterAssment[nonzero(bestClusterAssment[:, 0].A == 0)[0], 0] = bestCentroidToSplit# step 7: update and append the centroids of the new 2 sub-clustercentList[bestCentroidToSplit] = bestNewCentroids[0, :]centList.append(bestNewCentroids[1, :])# step 8: update the index and error of the samples whose cluster have been changedclusterAssment[nonzero(clusterAssment[:, 0].A == bestCentroidToSplit), :] = bestClusterAssmentprint 'Congratulations, cluster using bi-kmeans complete!'return mat(centList), clusterAssment# show your cluster only available with 2-D datadef showCluster(dataSet, k, centroids, clusterAssment):numSamples, dim = dataSet.shapeif dim != 2:print "Sorry! I can not draw because the dimension of your data is not 2!"return 1mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']if k > len(mark):print "Sorry! Your k is too large! please contact Zouxy"return 1# draw all samplesfor i in xrange(numSamples):markIndex = int(clusterAssment[i, 0])plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']# draw the centroidsfor i in range(k):plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)plt.show()


三、测试结果

      测试数据是二维的,共80个样本。有4个类。具体见上一个博文。

测试代码:

test_biKmeans.py

################################################## kmeans: k-means cluster# Author : zouxy# Date   : 2013-12-25# HomePage : http://blog.csdn.net/zouxy09# Email  : zouxy09@qq.com#################################################from numpy import *import timeimport matplotlib.pyplot as plt## step 1: load dataprint "step 1: load data..."dataSet = []fileIn = open('E:/Python/Machine Learning in Action/testSet.txt')for line in fileIn.readlines():lineArr = line.strip().split('\t')dataSet.append([float(lineArr[0]), float(lineArr[1])])## step 2: clustering...print "step 2: clustering..."dataSet = mat(dataSet)k = 4centroids, clusterAssment = biKmeans(dataSet, k)## step 3: show the resultprint "step 3: show the result..."showCluster(dataSet, k, centroids, clusterAssment)

      这里贴出两次的运行结果:

       不同的类用不同的颜色来表示,其中的大菱形是对应类的均值质心点。

       事实上,这个算法在初始质心选择不同时运行效果也会不同。我没有看初始的论文,不确定它究竟是不是一定会收敛到全局最小值。《机器学习实战》这本书说是可以的,但因为每次运行的结果不同,所以我有点怀疑,自己去找资料也没找到相关的说明。对这个算法有了解的还望您不吝指点下,谢谢。

 

 

12 1
原创粉丝点击