Sensor HAL框架分析之三

来源:互联网 发布:淘宝客服投诉电话 编辑:程序博客网 时间:2024/05/22 02:15

让我们来看看SensorManager的代码

SensorManager框架层代码

@frameworks/base/core/java/android/hardware/SensorManager.java

public SensorManager(Looper mainLooper) {       mMainLooper = mainLooper;    // 上面说了,这是Activity的Looper       synchronized(sListeners) {            if(!sSensorModuleInitialized) {                sSensorModuleInitialized = true;                nativeClassInit();        // 好像是调用本地方法初始化                  sWindowManager = IWindowManager.Stub.asInterface(                       ServiceManager.getService("window"));  // 获得Windows服务,不管它                  if (sWindowManager != null) {                   // if it's null we're running in the system process                   // which won't get the rotated values                   try {                       sRotation = sWindowManager.watchRotation(                                newIRotationWatcher.Stub() {                                    public voidonRotationChanged(int rotation) {                                       SensorManager.this.onRotationChanged(rotation);                                    }                                }                        );                   } catch (RemoteException e) {                   }                }               // initialize the sensor list               sensors_module_init();         // 初始化sensor module               final ArrayList<Sensor> fullList = sFullSensorsList;  // SensorManager维护的Sensor列表                 int i = 0;               do {                   Sensor sensor = new Sensor(); // 创建sensor对象,这个是传递给App的哦                   //调用module的方法,获得每一个sensor设备                   i = sensors_module_get_next_sensor(sensor, i);                 if (i>=0) {                       //Log.d(TAG, "found sensor: " + sensor.getName() +                       //        ", handle=" +sensor.getHandle());                       sensor.setLegacyType(getLegacySensorType(sensor.getType()));                       fullList.add(sensor); // 添加到SM维护的Sensor列表(嘿嘿)                       sHandleToSensor.append(sensor.getHandle(), sensor);                   }                }while (i>0);                sPool= new SensorEventPool( sFullSensorsList.size()*2 );               sSensorThread = new SensorThread(); // 哟,创建线程了好像            }        }    }

很明显nativeClassInit(),sensors_module_init(),sensors_module_get_next_sensor()都是本地实现的方法。

private static native void nativeClassInit();private static native int sensors_module_init();private static native intsensors_module_get_next_sensor(Sensor sensor, int next);

根据之前看代码的经验可知,很可能在frameworks/base/core/对应一个jni目录下的存在其对应的本地代码:

frameworks/base/core/java/android/hardware/SensorManager.javaframeworks/base/core/jni/android_hardware_SensorManager.cpp

果不其然,在jni存在其本地代码,让我们来看下nativeClassInit函数:

@frameworks/base/core/jni/android_hardware_SensorManager.cpp

static voidnativeClassInit (JNIEnv *_env, jclass _this){   jclasssensorClass = _env->FindClass("android/hardware/Sensor");   SensorOffsets& sensorOffsets = gSensorOffsets;   sensorOffsets.name        =_env->GetFieldID(sensorClass, "mName",      "Ljava/lang/String;");   sensorOffsets.vendor      =_env->GetFieldID(sensorClass, "mVendor",    "Ljava/lang/String;");   sensorOffsets.version     =_env->GetFieldID(sensorClass, "mVersion",   "I");   sensorOffsets.handle      =_env->GetFieldID(sensorClass, "mHandle",    "I");   sensorOffsets.type        = _env->GetFieldID(sensorClass,"mType",      "I");   sensorOffsets.range       =_env->GetFieldID(sensorClass, "mMaxRange",  "F");   sensorOffsets.resolution  =_env->GetFieldID(sensorClass, "mResolution","F");   sensorOffsets.power       =_env->GetFieldID(sensorClass, "mPower",     "F");   sensorOffsets.minDelay    =_env->GetFieldID(sensorClass, "mMinDelay",  "I");}

其代码比较简单,将Java框架层的Sensor类中的成员保存在本地代码中的gSensorOffsets 结构体中将来使用。

         sensors_module_init()本地方法的实现:

static jintsensors_module_ini(JNIEnv *env, jclass clazz){   SensorManager::getInstance();    return 0;}

         在本地代码中调用了SensorManager的getInstance方法,这又是一个典型的单例模式获得类的对象,注意这儿的SensorManager是本地的类,而不是Java层的SensorManager类。

本地SensorManager的定义

@frameworks/base/include/gui/SensorManager.h

class SensorManager :    publicASensorManager,    publicSingleton<SensorManager>{public:   SensorManager();   ~SensorManager();    ssize_tgetSensorList(Sensor const* const** list) const;    Sensor const*getDefaultSensor(int type);   sp<SensorEventQueue> createEventQueue();private:    //DeathRecipient interface    voidsensorManagerDied();    status_tassertStateLocked() const;private:    mutable MutexmLock;    mutablesp<ISensorServer> mSensorServer;    mutableSensor const** mSensorList;    mutableVector<Sensor> mSensors;    mutablesp<IBinder::DeathRecipient> mDeathObserver;};

注意SensorManager又继承了ASensorManager和泛型类Singleton<SensorManager>,而SensorManager类定义里没有getInstance所以其定义肯定是在ASensorManager或Singleton中。

@frameworks/base/include/utils/Singleton.h

template <typename TYPE>class ANDROID_API Singleton{public:    staticTYPE& getInstance() {       Mutex::Autolock _l(sLock);        TYPE*instance = sInstance;        if(instance == 0) {           instance = new TYPE();           sInstance = instance;        }        return*instance;    }    static boolhasInstance() {       Mutex::Autolock _l(sLock);        returnsInstance != 0;    }protected:    ~Singleton(){ };    Singleton() {};private:   Singleton(const Singleton&);   Singleton& operator = (const Singleton&);    static MutexsLock;    static TYPE*sInstance;};//---------------------------------------------------------------------------}; // namespace android
第一次调用getInstance方法时,创建泛型对象即:SensorManager,随后再调用该方法时返回第一次创建的泛型对象。

1)    本地SensorManager的创建

本地SensorManager是一个单例模式,其构造方法相对比较简单,它的主要工作交给了assertStateLocked方法:

@frameworks/base/libs/gui/SensorManager.cpp

SensorManager::SensorManager()          :mSensorList(0){    // okay we'renot locked here, but it's not needed during construction   assertStateLocked();}status_t SensorManager::assertStateLocked() const {    if(mSensorServer == NULL) {        // try for one second        constString16 name("sensorservice");        for (inti=0 ; i<4 ; i++) {            status_t err = getService(name,&mSensorServer);            if(err == NAME_NOT_FOUND) {               usleep(250000);               continue;            }            if(err != NO_ERROR) {               return err;            }            break;        }        classDeathObserver : public IBinder::DeathRecipient {           SensorManager& mSensorManger;           virtual void binderDied(const wp<IBinder>& who) {               LOGW("sensorservice died [%p]", who.unsafe_get());               mSensorManger.sensorManagerDied();            }        public:           DeathObserver(SensorManager& mgr) : mSensorManger(mgr) { }        };       mDeathObserver = new DeathObserver(*const_cast<SensorManager*>(this));        mSensorServer->asBinder()->linkToDeath(mDeathObserver);        mSensors= mSensorServer->getSensorList();       size_tcount = mSensors.size();       mSensorList = (Sensor const**)malloc(count * sizeof(Sensor*));        for(size_t i=0 ; i<count ; i++) {           mSensorList[i] = mSensors.array() + i;        }    }    returnNO_ERROR;}

在assertStateLocked方法里,先通过getService获得SensorService对象,然后注册了对SensorService的死亡监听器,SensorManager与SensorService不求同年同月同日,只求同年同月同日死。拜完了兄弟之后,调用getSensorList得到所有传感器的对象,存放到mSensorList中,保存在本地空间里。

2)    本地SensorManager中列表的获取

在上面函数调用中首先调用getService来获得SensorService服务,然后执行mSensorServer->getSensorList来获得服务提供的传感器列表:

Vector<Sensor> SensorService::getSensorList(){    return mUserSensorList;}

大家要注意啊,上面的getSensorList函数只是返回了mUserSensorList,而这个变量是在什么时候初始化的呢?

根据2.1节可知,SensorService在本地被初始化时,构造函数里并没有对mUserSensorList进行初始化,而SensorService里有一个onFirstRef方法,这个方法当SensorService第一次被强引用时被自动调用。那SensorService第一次被强引用是在什么时候呢?

在SensorManager::assertStateLocked方法里调用getService获得SensorService保存到mSensorServer成员变量中。

mSensorServer的定义在frameworks/base/include/gui/SensorManager.h中:

class SensorManager :    public ASensorManager,    public Singleton<SensorManager>{ mutable sp<ISensorServer>mSensorServer; mutable Sensorconst** mSensorList; mutable Vector<Sensor> mSensors;};

可以看出mSensroServer为强引用类型。所以在创建本地中的SensorManager类对象时,自动强引用SensorService,自动调用onFirstRef方法:

@frameworks/base/services/sensorservice/SensorService.cpp的onFirstRef简化方法如下:

void SensorService::onFirstRef(){      LOGD("nuSensorService starting...");   SensorDevice& dev(SensorDevice::getInstance());                //创建SensorDevice对象dev        if(dev.initCheck() == NO_ERROR) {        sensor_tconst* list;        ssize_tcount = dev.getSensorList(&list);                          //获得传感器设备列表        if (count> 0) {            …             for(ssize_t i=0 ; i<count ; i++) {                registerSensor( new HardwareSensor(list[i]) );  // 注册在本地获得的传感器                           …                      }            constSensorFusion& fusion(SensorFusion::getInstance());                                 if(hasGyro) {            // 如果有陀螺仪设备,则先注册和陀螺仪有关的虚拟传感器设备                registerVirtualSensor( newRotationVectorSensor() );     // 虚拟旋转传感器               registerVirtualSensor( new GravitySensor(list, count) ); // 虚拟重力传感器               registerVirtualSensor( new LinearAccelerationSensor(list, count) ); // 虚拟加速器                // these are optional               registerVirtualSensor( new OrientationSensor() ); // 虚拟方向传感器               registerVirtualSensor( new CorrectedGyroSensor(list, count) );        // 真正陀螺仪               // virtual debugging sensors...                char value[PROPERTY_VALUE_MAX];               property_get("debug.sensors", value, "0");               if (atoi(value)) {                   registerVirtualSensor( new GyroDriftSensor() );      // 虚拟陀螺测漂传感器                }            }                                // build the sensor list returned tousers            mUserSensorList = mSensorList;            if(hasGyro &&                   (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR))) {               // if we have the fancy sensor fusion, and it's not provided by the               // HAL, use our own (fused) orientation sensor by removing the               // HAL supplied one form the user list.               if (orientationIndex >= 0) {                   mUserSensorList.removeItemsAt(orientationIndex);                }            }            run("SensorService",PRIORITY_URGENT_DISPLAY);           mInitCheck = NO_ERROR;        }    }}

上面代码首先通过SensorDevice::getInstance()创建对象dev,调用dev.getSensorList(&list)获得传感器列表,将取出的sensor_t类型list传感器列表,塑造了HardwareSensor对象,传递给了registerSensor方法,通过registerSensor注册传感器,然后通过单例模型创建了SensorFusion对象,创建并注册了一系列的虚拟传感器,疑惑,极大的疑惑,怎么传感器还有虚拟的??其实你注意看这几个传感器最前面的条件,if(hasGyro),表示如果存在陀螺仪的话,会创建这些虚拟设备,再看这些虚拟设备:旋转,重力,加速器,方向等,这些设备都对应一个物理硬件:陀螺仪,所以这些逻辑上存在,物理上不存在的设备叫虚拟设备。在初始化了虚拟设备后,将mSensorList传感器列表赋值给mUserSensorList,mSensorList是由registerSensor初始化的,mUserSensorList是要提交给Java框架层的传感器列表,最后通过run方法运行了SensorService线程,我们先来看下registerSensor的代码:

void SensorService::registerSensor(SensorInterface* s){    sensors_event_t event;    memset(&event,0, sizeof(event));    const Sensorsensor(s->getSensor());    // add to thesensor list (returned to clients)    mSensorList.add(sensor);    // add to ourhandle->SensorInterface mapping   mSensorMap.add(sensor.getHandle(), s);    // create anentry in the mLastEventSeen array   mLastEventSeen.add(sensor.getHandle(), event);}

通过分析上面代码可知,将传入的HardwareSensor对象塑造了Sensor,添加到mSensorList向量表里,然后将HardwareSensor对象添加到mSensroMap键值对里,将新建的传感器事件数据封装对象event添加到mLastEventSeen键值对中。

我们通过下面的时序图来看下Sensor列表的获取过程。


1)    SensorService监听线程及传感器事件的捕获

让我们再来看看SensorService线程,还记得前面SensorService的父类中有一个Thread类,当调用run方法时会创建线程并调用threadLoop方法。

bool SensorService::threadLoop(){   LOGD("nuSensorService thread starting...");    const size_tnumEventMax = 16 * (1 + mVirtualSensorList.size());   sensors_event_t buffer[numEventMax];   sensors_event_t scratch[numEventMax];   SensorDevice& device(SensorDevice::getInstance());    const size_tvcount = mVirtualSensorList.size();    ssize_tcount;    do {             // 调用SensorDevice的poll方法看样子要多路监听了        count = device.poll(buffer,numEventMax);             if(count<0) {           LOGE("sensor poll failed (%s)", strerror(-count));           break;        }              // 记录poll返回的每一个传感器中的最后一个数据信息到mLastEventSeen中        recordLastValue(buffer, count);        // handlevirtual sensors 处理虚拟传感器数据        if (count&& vcount) {           sensors_event_t const * const event = buffer;                      // 获得虚拟传感器列表            constDefaultKeyedVector<int, SensorInterface*> virtualSensors(                   getActiveVirtualSensors());            constsize_t activeVirtualSensorCount = virtualSensors.size();  // 虚拟传感器个数            if(activeVirtualSensorCount) {               size_t k = 0;               SensorFusion& fusion(SensorFusion::getInstance());               if (fusion.isEnabled()) {                   for (size_t i=0 ; i<size_t(count) ; i++) {                       fusion.process(event[i]);              //处理虚拟传感器设备事件                    }                }               for (size_t i=0 ; i<size_t(count) ; i++) {                   for (size_t j=0 ; j<activeVirtualSensorCount ; j++) {                       sensors_event_t out;                       if (virtualSensors.valueAt(j)->process(&out, event[i])) {                            buffer[count + k] =out;                            k++;                       }                   }                }               if (k) {                   // record the last synthesized values                   recordLastValue(&buffer[count], k);                   count += k;                   // sort the buffer by time-stamps                   sortEventBuffer(buffer, count);                }            }        }        // sendour events to clients...              // 获得传感器连接对象列表        constSortedVector< wp<SensorEventConnection> > activeConnections(               getActiveConnections());        size_tnumConnections = activeConnections.size();        for(size_t i=0 ; i<numConnections ; i++) {           sp<SensorEventConnection> connection(                   activeConnections[i].promote());            if(connection != 0) {                               // 向指定的传感器连接客户端发送传感器数据信息                connection->sendEvents(buffer, count, scratch);            }        }    } while (count>= 0 || Thread::exitPending());   // 传感器循环监听线程   LOGW("Exiting SensorService::threadLoop => aborting...");    abort();    return false;}

我们看到device.poll方法,阻塞在了SensorDevice的poll方法上,它肯定就是读取Sensor硬件上的数据了,将传感器数据保存在buff中,然后调用recordLastValue方法,只保存同一类型传感器的最新数据(最后采集的一组数据)到键值对象mLastEventSeen里对应传感器的值域中。如果传感器设备是虚拟设备则调用SensorFusion.Process()方法对虚拟设备数据进行处理。SensorFusion关联一个SensorDevice,它是虚拟传感器设备的一个加工类,负责虚拟传感器数据的计算、处理、设备激活、设置延迟、获得功耗信息等操作。

让我们来回顾下整个过程吧。


1. SensorManager对象创建并调用assertStateLocked方法

2. 在assertStateLocked方法中调用getService,获得SensorService服务

3. 当SensorService第一次强引用时,自动调用OnFirstRef方法

4.获得SensorDevice单例对象

6. 调用SensorDevice.getSensorList方法sensor_t列表保存在SensorService中

8. 调用registerSensor注册传感器,添加到mSensorList列表中

9. 启动SensorService线程,准备监听所有注册的传感器设备

12. 多路监听注册的传感器设备,当有传感器事件时,返回sensor_event_t封装的事件信息

16. 记录产生传感器事件的设备信息

17. 调用getActiveConnections获得所有的活动的客户端SensorEventConnection类对象

19.向客户端发送传感器事件信息
0 0
原创粉丝点击