spark 安装

来源:互联网 发布:中银e贷交易数据 编辑:程序博客网 时间:2024/05/22 12:09

环境:CentOS 6.4, Hadoop 1.1.2, JDK 1.7, Spark 0.7.2, Scala 2.9.3

折腾了几天,终于把Spark 集群安装成功了,其实比hadoop要简单很多,由于网上搜索到的博客大部分都还停留在需要依赖mesos的版本,走了不少弯路。

1. 安装 JDK 1.7

yum search openjdk-develsudo yum install java-1.7.0-openjdk-devel.x86_64/usr/sbin/alternatives --config java/usr/sbin/alternatives --config javacsudo vim /etc/profile# add the following lines at the endexport JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.19.x86_64export JRE_HOME=$JAVA_HOME/jreexport PATH=$PATH:$JAVA_HOME/binexport CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar# save and exit vim# make the bash profile take effect immediately$ source /etc/profile# test$ java -version

参考我的另一篇博客,安装和配置CentOS服务器的详细步骤。

2. 安装 Scala 2.9.3

Spark 0.7.2 依赖 Scala 2.9.3, 我们必须要安装Scala 2.9.3.

下载 scala-2.9.3.tgz 并 保存到home目录.

$ tar -zxf scala-2.9.3.tgz$ sudo mv scala-2.9.3 /usr/lib$ sudo vim /etc/profile# add the following lines at the endexport SCALA_HOME=/usr/lib/scala-2.9.3export PATH=$PATH:$SCALA_HOME/bin# save and exit vim#make the bash profile take effect immediatelysource /etc/profile# test$ scala -version

3. 下载预编译好的Spark

下载预编译好的Spark, spark-0.7.2-prebuilt-hadoop1.tgz.

如果你想从零开始编译,则下载源码包,但是我不建议你这么做,因为有一个Maven仓库,twitter4j.org, 被墙了,导致编译时需要翻墙,非常麻烦。如果你有DIY精神,并能顺利翻墙,则可以试试这种方式。

4. 本地模式

4.1 解压

$ tar -zxf spark-0.7.2-prebuilt-hadoop1.tgz

4.2 设置SPARK_EXAMPLES_JAR 环境变量

$ vim ~/.bash_profile# add the following lines at the endexport SPARK_EXAMPLES_JAR=$HOME/spark-0.7.2/examples/target/scala-2.9.3/spark-examples_2.9.3-0.7.2.jar# save and exit vim#make the bash profile take effect immediately$ source /etc/profile

这一步其实最关键,很不幸的是,官方文档和网上的博客,都没有提及这一点。我是偶然看到了这两篇帖子,Running SparkPi, Null pointer exception when running ./run spark.examples.SparkPi local,才补上了这一步,之前死活都无法运行SparkPi。

4.3 (可选)设置 SPARK_HOME环境变量,并将SPARK_HOME/bin加入PATH

$ vim ~/.bash_profile# add the following lines at the endexport SPARK_HOME=$HOME/spark-0.7.2export PATH=$PATH:$SPARK_HOME/bin# save and exit vim#make the bash profile take effect immediately$ source /etc/profile

4.4 现在可以运行SparkPi了

$ cd ~/spark-0.7.2$ ./run spark.examples.SparkPi local 

5. 集群模式

5.1 安装Hadoop

用VMware Workstation 创建三台CentOS 虚拟机,hostname分别设置为 master, slave01, slave02,设置SSH无密码登陆,安装hadoop,然后启动hadoop集群。参考我的这篇博客,在CentOS上安装Hadoop.

5.2 Scala

在三台机器上都要安装 Scala 2.9.3 , 按照第2节的步骤。JDK在安装Hadoop时已经安装了。

5.3 在master上安装并配置Spark

解压

$ tar -zxf spark-0.7.2-prebuilt-hadoop1.tgz

设置SPARK_EXAMPLES_JAR 环境变量

$ vim ~/.bash_profile# add the following lines at the endexport SPARK_EXAMPLES_JAR=$HOME/spark-0.7.2/examples/target/scala-2.9.3/spark-examples_2.9.3-0.7.2.jar# save and exit vim#make the bash profile take effect immediately$ source /etc/profile

在 in conf/spark-env.sh 中设置SCALA_HOME

$ cd ~/spark-0.7.2/conf$ mv spark-env.sh.template spark-env.sh$ vim spark-env.sh# add the following lineexport SCALA_HOME=/usr/lib/scala-2.9.3# save and exit

conf/slaves, 添加Spark worker的hostname, 一行一个。

$ vim slavesslave01slave02# save and exit

(可选)设置 SPARK_HOME环境变量,并将SPARK_HOME/bin加入PATH

$ vim ~/.bash_profile# add the following lines at the endexport SPARK_HOME=$HOME/spark-0.7.2export PATH=$PATH:$SPARK_HOME/bin# save and exit vim#make the bash profile take effect immediately$ source /etc/profile

5.4 在所有worker上安装并配置Spark

既然master上的这个文件件已经配置好了,把它拷贝到所有的worker。注意,三台机器spark所在目录必须一致,因为master会登陆到worker上执行命令,master认为worker的spark路径与自己一样。

$ cd$ scp -r spark-0.7.2 dev@slave01:~$ scp -r spark-0.7.2 dev@slave02:~

按照第5.3节设置SPARK_EXAMPLES_JAR环境变量,配置文件不用配置了,因为是直接从master复制过来的,已经配置好了。

5.5 启动 Spark 集群

在master上执行

$ cd ~/spark-0.7.2$ bin/start-all.sh

检测进程是否启动

$ jps11055 Jps2313 SecondaryNameNode2409 JobTracker2152 NameNode4822 Master

浏览master的web UI(默认http://localhost:8080). 这是你应该可以看到所有的word节点,以及他们的CPU个数和内存等信息。 ##5.6 运行SparkPi例子

$ cd ~/spark-0.7.2$ ./run spark.examples.SparkPi spark://master:7077

(可选)运行自带的例子,SparkLR 和 SparkKMeans.

#Logistic Regression#./run spark.examples.SparkLR spark://master:7077#kmeans$ ./run spark.examples.SparkKMeans spark://master:7077 ./kmeans_data.txt 2 1

5.7 从HDFS读取文件并运行WordCount

$ cd ~/spark-0.7.2$ hadoop fs -put README.md .$ MASTER=spark://master:7077 ./spark-shellscala> val file = sc.textFile("hdfs://master:9000/user/dev/README.md")scala> val count = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_)scala> count.collect()

5.8 停止 Spark 集群

$ cd ~/spark-0.7.2$ bin/stop-all.sh
0 0