C++位运算

来源:互联网 发布:php fsockopen 异步 编辑:程序博客网 时间:2024/04/29 04:06
前言
看到有些人对位运算还存在问题,于是决定写这篇文章作个简要说明。

什么是位(bit)?

很简单,位(bit)就是单个的0或1,位是我们在计算机上所作一切的基础。计算机上的所有数据都是用位来存储的。一个字节(BYTE)由八个位组成,一个字(WORD)是二个字节或十六位,一个双字(DWORD)是二个字(WORDS)或三十二位。如下所示:

  0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0
| |              |               |               |              | |
| +- bit 31      |               |               |       bit 0 -+ |
|                |               |               |                |
+-- BYTE 3 ---- -+---- BYTE 2 ---+---- BYTE 1 ---+--- BYTE 0 -----+
|                                |                                |
+------------ WORD 1 ------------+----------- WORD 0 -------------+
|                                                                 |
+----------------------------- DWORD -----------------------------+

使用位运算的好处是可以将BYTE, WORD 或 DWORD 作为小数组或结构使用。通过位运算可以检查位的值或赋值,也可以对整组的位进行运算。

16进制数及其与位的关系
用0或1表示的数值就是二进制数,很难理解。因此用到16进制数。

16进制数用4个位表示0 - 15的值,4个位组成一个16进制数。也把4位成为半字节(nibble)。一个BYTE有二个nibble,因此可以用二个16进制数表示一个BYTE。如下所示:

NIBBLE   HEX VALUE
======   =========
 0000        0
 0001        1
 0010        2
 0011        3
 0100        4
 0101        5
 0110        6
 0111        7
 1000        8
 1001        9
 1010        A
 1011        B
 1100        C
 1101        D
 1110        E
 1111        F

如果用一个字节存放字母"r"(ASCII码114),结果是:
0111 0010    二进制
  7    2     16进制

可以表达为:'0x72'

有6种位运算:
   &   与运算
   |   或运算
   ^   异或运算
   ~   非运算(求补)
  >>   右移运算
  <<   左移运算

与运算(&)
双目运算。二个位都置位(等于1)时,结果等于1,其它的结果都等于0。
   1   &   1   ==   1
   1   &   0   ==   0
   0   &   1   ==   0
   0   &   0   ==   0

与运算的一个用途是检查指定位是否置位(等于1)。例如一个BYTE里有标识位,要检查第4位是否置位,代码如下:

BYTE b = 50;
if ( b & 0x10 )
    cout << "Bit four is set" << endl;
else
    cout << "Bit four is clear" << endl;

上述代码可表示为:

    00110010  - b
  & 00010000  - & 0x10
 ----------------------------
    00010000  - result

可以看到第4位是置位了。

或运算( | )
双目运算。二个位只要有一个位置位,结果就等于1。二个位都为0时,结果为0。
   1   |   1   ==   1
   1   |   0   ==   1
   0   |   1   ==   1
   0   |   0   ==   0

与运算也可以用来检查置位。例如要检查某个值的第3位是否置位:

BYTE b = 50;
BYTE c = b | 0x04;
cout << "c = " << c << endl;

可表达为:

    00110010  - b
  | 00000100  - | 0x04
  ----------
    00110110  - result

异或运算(^)
双目运算。二个位不相等时,结果为1,否则为0。

   1   ^   1   ==   0
   1   ^   0   ==   1
   0   ^   1   ==   1
   0   ^   0   ==   0

异或运算可用于位值翻转。例如将第3位与第4位的值翻转:

BYTE b = 50;
cout << "b = " << b << endl;
b = b ^ 0x18;
cout << "b = " << b << endl;
b = b ^ 0x18;
cout << "b = " << b << endl;

可表达为:

    00110010  - b
  ^ 00011000  - ^0x18
  ----------
    00101010  - result

    00101010  - b
  ^ 00011000  - ^0x18
  ----------
    00110010  - result

非运算(~)
单目运算。位值取反,置0为1,或置1为0。非运算的用途是将指定位清0,其余位置1。非运算与数值大小无关。例如将第1位和第2位清0,其余位置1:

BYTE b = ~0x03;
cout << "b = " << b << endl;
WORD w = ~0x03;
cout << "w = " << w << endl;

可表达为:

    00000011  - 0x03
    11111100  - ~0x03  b

    0000000000000011  - 0x03
    1111111111111100  - ~0x03  w

非运算和与运算结合,可以确保将指定为清0。如将第4位清0:

BYTE b = 50;
cout << "b = " << b << endl;
BYTE c = b & ~0x10;
cout << "c = " << c << endl;

可表达为:

    00110010  - b
  & 11101111  - ~0x10
  ----------
    00100010  - result

移位运算(>> 与 <<)
将位值向一个方向移动指定的位数。右移 >> 算子从高位向低位移动,左移 << 算子从低位向高位移动。往往用位移来对齐位的排列(如MAKEWPARAM, HIWORD, LOWORD 宏的功能)。

BYTE b = 12;
cout << "b = " << b << endl;
BYTE c = b << 2;
cout << "c = " << c << endl;
c = b >> 2;
cout << "c = " << c << endl;

可表达为:
    00001100  - b
    00110000  - b << 2
    00000011  - b >> 2

译注:以上示例都对,但举例用法未必恰当。请阅文末链接的文章,解释得较为清楚。

位域(Bit Field)
位操作中的一件有意义的事是位域。利用位域可以用BYTE, WORD或DWORD来创建最小化的数据结构。例如要保存日期数据,并尽可能减少内存占用,就可以声明这样的结构:

struct date_struct {
    BYTE   day   : 5,   // 1 to 31
           month : 4,   // 1 to 12
           year  : 14;  // 0 to 9999
    }date;
    
在结构中,日期数据占用最低5位,月份占用4位,年占用14位。这样整个日期数据只需占用23位,即3个字节。忽略第24位。如果用整数来表达各个域,整个结构要占用12个字节。

| 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 |
   |                             |         |          |
   +------------- year --------------+ month+-- day --+

现在分别看看在这个结构声明中发生了什么

首先看一下位域结构使用的数据类型。这里用的是BYTE。1个BYTE有8个位,编译器将分配1个BYTE的内存。如果结构内的数据超过8位,编译器就再分配1个BYTE,直到满足数据要求。如果用WORD或DWORD作结构的数据类型,编译器就分配一个完整的32位内存给结构。

其次看一下域声明。变量(day, month, year)名跟随一个冒号,冒号后是变量占用的位数。位域之间用逗号分隔,用分号结束。

使用了位域结构,就可以方便地象处理普通结构数据那样处理成员数据。尽管我们无法得到位域的地址,却可以使用结构地址。例如:
date.day = 12;
dateptr = &date;
dateptr->year = 1852;
0 0
原创粉丝点击