java线程安全总结

来源:互联网 发布:彩票软件易语言源码 编辑:程序博客网 时间:2024/05/16 07:10

浅谈java内存模型
       不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。其实java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节,对于java开发人员,要清楚在jvm内存模型的基础上,如果解决多线程的可见性和有序性。
       那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本,当然线程的工作内存大小是有限制的。当线程操作某个对象时,执行顺序如下:
 (1) 从主存复制变量到当前工作内存 (read and load)
 (2) 执行代码,改变共享变量值 (use and assign)
 (3) 用工作内存数据刷新主存相关内容 (store and write)

JVM规范定义了线程对主存的操作指令:read,load,use,assign,store,write。当一个共享变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。
        那么,什么是有序性呢 ?线程在引用变量时不能直接从主内存中引用,如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,这个过程为read-load,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本(read-load-use),也有可能直接引用原来的副本(use),也就是说 read,load,use顺序可以由JVM实现系统决定。
        线程不能直接为主存中中字段赋值,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store-write),至于何时同步过去,根据JVM实现系统决定.有该字段,则会从主内存中将该字段赋值到工作内存中,这个过程为read-load,完成后线程会引用该变量副本,当同一线程多次重复对字段赋值时,比如:

 for(int i=0;i<10;i++)  a++;


线程有可能只对工作内存中的副本进行赋值,只到最后一次赋值后才同步到主存储区,所以assign,store,weite顺序可以由JVM实现系统决定。假设有一个共享变量x,线程a执行x=x+1。从上面的描述中可以知道x=x+1并不是一个原子操作,它的执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x加1
3 将x加1后的值写回主

如果另外一个线程b执行x=x-1,执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x减1
3 将x减1后的值写回主存

那么显然,最终的x的值是不可靠的。假设x现在为10,线程a加1,线程b减1,从表面上看,似乎最终x还是为10,但是多线程情况下会有这种情况发生:
1:线程a从主存读取x副本到工作内存,工作内存中x值为10
2:线程b从主存读取x副本到工作内存,工作内存中x值为10
3:线程a将工作内存中x加1,工作内存中x值为11
4:线程a将x提交主存中,主存中x为11
5:线程b将工作内存中x值减1,工作内存中x值为9
6:线程b将x提交到中主存中,主存中x为9

同样,x有可能为11,如果x是一个银行账户,线程a存款,线程b扣款,显然这样是有严重问题的,要解决这个问题,必须保证线程a和线程b是有序执行的,并且每个线程执行的加1或减1是一个原子操作。看看下面代码:

public class Account {    private int balance;    public Account(int balance) {        this.balance = balance;    }    public int getBalance() {        return balance;    }    public void add(int num) {        balance = balance + num;    }    public void withdraw(int num) {        balance = balance - num;    }    public static void main(String[] args) throws InterruptedException {        Account account = new Account(1000);        Thread a = new Thread(new AddThread(account, 20), "add");        Thread b = new Thread(new WithdrawThread(account, 20), "withdraw");        a.start();        b.start();        a.join();        b.join();        System.out.println(account.getBalance());    }    static class AddThread implements Runnable {        Account account;        int     amount;        public AddThread(Account account, int amount) {            this.account = account;            this.amount = amount;        }        public void run() {            for (int i = 0; i < 200000; i++) {                account.add(amount);            }        }    }    static class WithdrawThread implements Runnable {        Account account;        int     amount;        public WithdrawThread(Account account, int amount) {            this.account = account;            this.amount = amount;        }        public void run() {            for (int i = 0; i < 100000; i++) {                account.withdraw(amount);            }        }    }}


 


第一次执行结果为10200,第二次执行结果为1060,每次执行的结果都是不确定的,因为线程的执行顺序是不可预见的。这是java同步产生的根源,synchronized关键字保证了多个线程对于同步块是互斥的,synchronized作为一种同步手段,解决java多线程的执行有序性和内存可见性,而volatile关键字之解决多线程的内存可见性问题。后面将会详细介绍。



synchronized关键字
        上面说了,java用synchronized关键字做为多线程并发环境的执行有序性的保证手段之一。当一段代码会修改共享变量,这一段代码成为互斥区或临界区,为了保证共享变量的正确性,synchronized标示了临界区。典型的用法如下:

synchronized(锁){     临界区代码} 

为了保证银行账户的安全,可以操作账户的方法如下:

public synchronized void add(int num) {     balance = balance + num;}public synchronized void withdraw(int num) {     balance = balance - num;}


 


刚才不是说了synchronized的用法是这样的吗:

synchronized(锁){临界区代码}


 


那么对于public synchronized void add(int num)这种情况,意味着什么呢?其实这种情况,锁就是这个方法所在的对象。同理,如果方法是public  static synchronized void add(int num),那么锁就是这个方法所在的class。
        理论上,每个对象都可以做为锁,但一个对象做为锁时,应该被多个线程共享,这样才显得有意义,在并发环境下,一个没有共享的对象作为锁是没有意义的。假如有这样的代码:

public class ThreadTest{  public void test(){     Object lock=new Object();     synchronized (lock){        //do something     }  }}


lock变量作为一个锁存在根本没有意义,因为它根本不是共享对象,每个线程进来都会执行Object lock=new Object();每个线程都有自己的lock,根本不存在锁竞争。
        每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列,就绪队列存储了将要获得锁的线程,阻塞队列存储了被阻塞的线程,当一个被线程被唤醒(notify)后,才会进入到就绪队列,等待cpu的调度。当一开始线程a第一次执行account.add方法时,jvm会检查锁对象account的就绪队列是否已经有线程在等待,如果有则表明account的锁已经被占用了,由于是第一次运行,account的就绪队列为空,所以线程a获得了锁,执行account.add方法。如果恰好在这个时候,线程b要执行account.withdraw方法,因为线程a已经获得了锁还没有释放,所以线程b要进入account的就绪队列,等到得到锁后才可以执行。
一个线程执行临界区代码过程如下:
1 获得同步锁
2 清空工作内存
3 从主存拷贝变量副本到工作内存
4 对这些变量计算
5 将变量从工作内存写回到主存
6 释放锁
可见,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。


生产者/消费者模式
        生产者/消费者模式其实是一种很经典的线程同步模型,很多时候,并不是光保证多个线程对某共享资源操作的互斥性就够了,往往多个线程之间都是有协作的。       


package moneak.demos.threads;public class ProducerConsumer {public static void main(String[] args)       {          StackBasket s = new StackBasket();          Producer p = new Producer(s);          Consumer c = new Consumer(s);          Thread tp = new Thread(p);          Thread tc = new Thread(c);          tp.start();          tc.start();      }  }    //  class Mantou  {      private int id;            Mantou(int id){          this.id = id;      }        public String toString(){          return "Mantou :" + id;      }  }    //共享栈空间  class StackBasket  {      Mantou sm[] = new Mantou[6];      int index = 0;            /**      * show 生产方法.     * show 该方法为同步方法,持有方法锁;     * show 首先循环判断满否,满的话使该线程等待,释放同步方法锁,允许消费;     * show 当不满时首先唤醒正在等待的消费方法,但是也只能让其进入就绪状态,     * show 等生产结束释放同步方法锁后消费才能持有该锁进行消费     * @param m 元素     * @return 没有返回值      */         public synchronized void push(Mantou m){          try{              while(index == sm.length){                  System.out.println("!!!!!!!!!生产满了!!!!!!!!!");                  this.wait();              }              this.notify();          }catch(InterruptedException e){              e.printStackTrace();          }catch(IllegalMonitorStateException e){              e.printStackTrace();          }                    sm[index] = m;          index++;          System.out.println("生产了:" + m + " 共" + index + "个馒头");      }        /**      * show 消费方法     * show 该方法为同步方法,持有方法锁     * show 首先循环判断空否,空的话使该线程等待,释放同步方法锁,允许生产;     * show 当不空时首先唤醒正在等待的生产方法,但是也只能让其进入就绪状态     * show 等消费结束释放同步方法锁后生产才能持有该锁进行生产     * @param b true 表示显示,false 表示隐藏      * @return 没有返回值      */       public synchronized Mantou pop(){          try{              while(index == 0){                  System.out.println("!!!!!!!!!消费光了!!!!!!!!!");                  this.wait();              }              this.notify();          }catch(InterruptedException e){              e.printStackTrace();          }catch(IllegalMonitorStateException e){              e.printStackTrace();          }          index--;          System.out.println("消费了:---------" + sm[index] + " 共" + index + "个馒头");          return sm[index];      }  }    class Producer implements Runnable  {      StackBasket ss = new StackBasket();      Producer(StackBasket ss){          this.ss = ss;      }        /**      * show 生产进程.      */       public void run(){          for(int i = 0;i < 20;i++){              Mantou m = new Mantou(i);              ss.push(m);  //          System.out.println("生产了:" + m + " 共" + ss.index + "个馒头");  //          在上面一行进行测试是不妥的,对index的访问应该在原子操作里,因为可能在push之后此输出之前又消费了,会产生输出混乱              try{                  Thread.sleep((int)(Math.random()*500));              }catch(InterruptedException e){                  e.printStackTrace();              }          }      }  }    class Consumer implements Runnable  {      StackBasket ss = new StackBasket();      Consumer(StackBasket ss){          this.ss = ss;      }        /**      * show 消费进程.     */       public void run(){          for(int i = 0;i < 20;i++){              Mantou m = ss.pop();  //          System.out.println("消费了:---------" + m + " 共" + ss.index + "个馒头");  //  同上  在上面一行进行测试也是不妥的,对index的访问应该在原子操作里,因为可能在pop之后此输出之前又生产了,会产生输出混乱              try{                  Thread.sleep((int)(Math.random()*1000));              }catch(InterruptedException e){                  e.printStackTrace();              }          }      } }




volatile关键字
       volatile是java提供的一种同步手段,只不过它是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。而最彻底的同步要保证有序性和可见性,例如synchronized。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到,但是volatile不能保证对变量的修改是有序的。什么意思呢?假如有这样的代码:

public class VolatileTest{  public volatile int a;  public void add(int count){       a=a+count;  }}


 


        当一个VolatileTest对象被多个线程共享,a的值不一定是正确的,因为a=a+count包含了好几步操作,而此时多个线程的执行是无序的,因为没有任何机制来保证多个线程的执行有序性和原子性。volatile存在的意义是,任何线程对a的修改,都会马上被其他线程读取到,因为直接操作主存,没有线程对工作内存和主存的同步。所以,volatile的使用场景是有限的,在有限的一些情形下可以使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
1)对变量的写操作不依赖于当前值。
2)该变量没有包含在具有其他变量的不变式中

volatile只保证了可见性,所以Volatile适合直接赋值的场景,如

public class VolatileTest{  public volatile int a;  public void setA(int a){      this.a=a;  }}


 


在没有volatile声明时,多线程环境下,a的最终值不一定是正确的,因为this.a=a;涉及到给a赋值和将a同步回主存的步骤,这个顺序可能被打乱。如果用volatile声明了,读取主存副本到工作内存和同步a到主存的步骤,相当于是一个原子操作。所以简单来说,volatile适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。这是一种很简单的同步场景,这时候使用volatile的开销将会非常小。
0 0