char * 与 char[]的区别及C++ Memory Layout

来源:互联网 发布:康佳电视机软件下载 编辑:程序博客网 时间:2024/05/22 16:59

一直想记一下,这是很多朋友都总结过的问题。问题的引出从CC1.2的题目上,要求char*的string inplace reverse,于是写代码,搞了好几个都是错的,主要是char * 赋值的问题。最后CC1.2,函数输入不是”文字常量“就行,可以用char []这样的variable。

简单点说,char * str,str是一个指针,指向文字常量区的某个地址,这货不可被更改。比如,char * str = “Hello Hello", 如果我们将*str或*(str+1)赋值为‘W',想改变第一个字符,这样程序会挂。

char []是栈上的一个开发区,可以随意被开垦更改,所以char str [] = "Hello", str[0] = ’W'是可以的。

另外顺便提一下,char * str []是一个串指向文字常量区的指针,比如我们常用在main函数的parameter:char * argv[]。这样的话,我们赋值的时候要主要外面加大括号{},dereference的时候要加中括号[],因为是数组。比如,char * str []; str = {"Hello", "World"}; str [1];...

内存的layout,老生常谈,顺这个题目记一下吧。上经典代码:

main(){   char *c1 = "abc";   char c2[] = "abc";   char *c3 = ( char* )malloc(3);   //  *c3 = "abc" //error   c3 = "abc";   printf("%d %d %s/n",&c1,c1,c1);   printf("%d %d %s/n",&c2,c2,c2);   printf("%d %d %s/n",&c3,c3,c3);   getchar();}  
运行结果

2293628 4199056 abc
2293624 2293624 abc
2293620 4199056 abc

说明了:char *c1 = "abc";实际上先是在文字常量区分配了一块内存放"abc",然后在栈上分配一地址给c1并指向
这块地址,然后改变常量"abc"自然会崩溃
然而char c2[] = "abc",实际上abc分配内存的地方和上者并不一样,可以从
4199056
2293624 看出,完全是两块地方,推断4199056处于常量区,而2293624处于栈区
2293628
2293624
2293620 这段输出看出三个指针分配的区域为栈区,而且是从高地址到低地址
2293620 4199056 abc 看出编译器将c3优化指向常量区的"abc"(在我这不是)

不过值得一提的是,strcpy(c3,"abc")是可以的。
这是一个前辈写的,非常详细
//main.cpp
  int a=0;    //全局初始化区
  char *p1;   //全局未初始化区
  main()
  {
   int b;栈
   char s[]="abc";   //栈
   char *p2;         //栈
   char *p3="123456";   //123456/0在常量区,p3在栈上。
   static int c=0;   //全局(静态)初始化区
   p1 = (char*)malloc(10);
   p2 = (char*)malloc(20);   //分配得来得10和20字节的区域就在堆区。
   strcpy(p1,"123456");   //123456/0放在常量区,编译器可能会将它与p3所向"123456"优化成一个
地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。例如,声明在函数中一个局部变量int b;系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1=(char*)malloc(10);
在C++中用new运算符
如p2=(char*)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将
该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大
小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正
好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地
址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译
时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间
较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地
址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的
虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈:由系统自动分配,速度较快。但程序员是无法控制的。
堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用Virtual Alloc分配内存,他不是在堆,也不是在栈,而是直接在进
程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的
地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变
量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主
函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。
2.6存取效率的比较
char s1[]="aaaaaaaaaaaaaaa";
char *s2="bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
voidmain()
{
char a=1;
char c[]="1234567890";
char *p="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10:a=c[1];
004010678A4DF1movcl,byteptr[ebp-0Fh]
0040106A884DFCmovbyteptr[ebp-4],cl
11:a=p[1];
0040106D8B55ECmovedx,dwordptr[ebp-14h]
004010708A4201moval,byteptr[edx+1]
004010738845FCmovbyteptr[ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据
edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会
切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。


0 0
原创粉丝点击