哈希算法

来源:互联网 发布:手机性能检测软件 编辑:程序博客网 时间:2024/05/16 12:02
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

  HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128位的编码,这些编码值叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系

基本概念

   * 若结构中存在和关键字K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表

  * 对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称冲突。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。

  * 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。

常用的构造散列函数的方法

  散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位ǐ

  1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种散列函数叫做自身函数)

  2. 数字分析法

  3. 平方取中法

  4. 折叠法

  5. 随机数法

  6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。

处理冲突的方法

  1. 开放寻址法;Hi=(H(key) + di) MOD m, i=1,2,…, k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法:

  1. di=1,2,3,…, m-1,称线性探测再散列;

  2. di=1^2, (-1)^2, 2^2,(-2)^2, (3)^2, …, ±(k)^2,(k<=m/2)称二次探测再散列;

  3. di=伪随机数序列,称伪随机探测再散列。 ==

  2. 再散列法:Hi=RHi(key), i=1,2,…,k RHi均是不同的散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。

  3. 链地址法(拉链法)

  4. 建立一个公共溢出区

查找的性能分析

  

  散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。

  查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素:

  1. 散列函数是否均匀;

  2. 处理冲突的方法;

  3. 散列表的装填因子。

  散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度

  α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。

  实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。

  了解了hash基本定义,就不能不提到一些著名的hash算法,MD5SHA-1 可以说是目前应用最广泛的Hash算法,而它们都是以MD4 为基础设计的。那么他们都是什么意思呢?

  这里简单说一下:

  (1) MD4

  MD4(RFC 1320)是 MIT 的 Ronald L. Rivest 在 1990 年设计的,MD 是 Message Digest 的缩写。它适用在32位字长的处理器上用高速软件实现--它是基于 32 位操作数的位操作来实现的。

  (2) MD5

  MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好

  (3) SHA-1及其他

  SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。

  那么这些Hash算法到底有什么用呢?

  Hash算法在信息安全方面的应用主要体现在以下的3个方面:

  (1) 文件校验

  我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。

  MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。

  (2) 数字签名

  Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。 对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。

  (3) 鉴权协议

  如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。以上就是一些关于hash以及其相关的一些基本预备知识。那么在emule里面他具体起到什么作用呢?


散列函数的性质

  所有散列函数都有如下一个基本特性:如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。这个特性是散列函数具有确定性的结果。但另一方面,散列函数的输入和输出不是一一对应的,如果两个散列值相同,两个输入值很可能是相同的,但并不能绝对肯定二者一定相等。输入一些数据计算出散列值,然后部分改变输入值,一个具有强混淆特性的散列函数会产生一个完全不同的散列值。

  典型的散列函数都有无限定义域,比如任意长度的字节字符串,和有限的值域,比如固定长度的比特串。在某些情况下,散列函数可以设计成具有相同大小的定义域和值域间的一一对应。一一对应的散列函数也称为排列。可逆性可以通过使用一系列的对于输入值的可逆“混合”运算而得到。求。到2007年为止,第三版还未完备。

散列函数的应用

  由于散列函数的应用的多样性,它们经常是专为某一应用而设计的。例如,加密散列函数假设存在一个要找到具有相同散列值的原始输入的敌人。一个设计优秀的加密散列函数是一个“单向”操作:对于给定的散列值,没有实用的方法可以计算出一个原始输入,也就是说很难伪造。为加密散列为目的设计的函数,如MD5,被广泛的用作检验散列函数。这样软件下载的时候,就会对照验证代码之后才下载正确的文件部分。此代码有可能因为环境因素的变化,如机器配置或者IP地址的改变而有变动。以保证源文件的安全性。

  错误监测和修复函数主要用于辨别数据被随机的过程所扰乱的事例。当散列函数被用于校验和的时候,可以用相对较短的散列值来验证任意长度的数据是否被更改过。

散列表

  散列表是散列函数的一个主要应用,使用散列表能够快速的按照关键字查找数据记录。(注意:关键字不是像在加密中所使用的那样是秘密的,但它们都是用来“解锁”或者访问数据的。)例如,在英语字典中的关键字是英文单词,和它们相关的记录包含这些单词的定义。在这种情况下,散列函数必须把按照字母顺序排列的字符串映射到为散列表的内部数组所创建的索引上。

  散列表散列函数的几乎不可能/不切实际的理想是把每个关键字映射到唯一的索引上(参考完美散列),因为这样能够保证直接访问表中的每一个数据。

  一个好的散列函数(包括大多数加密散列函数)具有均匀的真正随机输出,因而平均只需要一两次探测(依赖于装填因子)就能找到目标。同样重要的是,随机散列函数几乎不可能出现非常高的冲突率。但是,少量的可以估计的冲突在实际状况下是不可避免的(参考生日悖论)。

  在很多情况下,heuristic散列函数所产生的冲突比随机散列函数少的多。Heuristic函数利用了相似关键字的相似性。例如,可以设计一个heuristic函数使得像FILE0000.CHK, FILE0001.CHK, FILE0002.CHK, 等等这样的文件名映射到表的连续指针上,也就是说这样的序列不会发生冲突。相比之下,对于一组好的关键字性能出色的随机散列函数,对于一组坏的关键字经常性能很差,这种坏的关键字会自然产生而不仅仅在攻击中才出现。性能不佳的散列函数表意味着查找操作会退化为费时的线性搜索。

错误校正

  使用一个散列函数可以很直观的检测出数据在传输时发生的错误。在数据的发送方,对将要发送的数据应用散列函数,并将计算的结果同原始数据一同发送。在数据的接收方,同样的散列函数被再一次应用到接收到的数据上,如果两次散列函数计算出来的结果不一致,那么就说明数据在传输的过程中某些地方有错误了。这就叫做冗余校验。

  对于错误校正,假设相似扰动的分布接近最小(a distribution of likely perturbations is assumed at least approximately)。对于一个信息串的微扰可以被分为两类,大的(不可能的)错误和小的(可能的)错误。我们对于第二类错误重新定义如下,假如给定 H(x) 和 x+s,那么只要s足够小,我们就能有效的计算出x。那样的散列函数被称作错误校正编码。这些错误校正编码有两个重要的分类:循环冗余校验和里德所罗门码。

语音识别

  对于像从一个已知列表中匹配一个MP3文件这样的应用,一种可能的方案是使用传统的散列函数——例如MD5,但是这种方案会对时间平移、CD读取错误、不同的音频压缩算法或者音量调整的实现机制等情况非常敏感。使用一些类似于MD5的方法有利于迅速找到那些严格相同(从音频文件的二进制数据来看)的音频文件,但是要找到全部相同(从音频文件的内容来看)的音频文件就需要使用其他更高级的算法了。

  那些并不紧随IT工业潮流的人往往能反其道而行之,对于那些微小差异足够鲁棒的散列函数确实存在。现存的绝大多数散列算法都是不够鲁棒的,但是有少数散列算法能够达到辨别从嘈杂房间里的扬声器里播放出来的音乐的鲁棒性。有一个实际的例子是Shazam[1]服务。用户可以用电话机拨打一个特定的号码,并将电话机的话筒靠近用于播放音乐的扬声器。该项服务会分析正在播放的音乐,并将它于存储在数据库中的已知的散列值进行比较。用户就能够收到被识别的音乐的曲名(需要收取一定的费用)

  什么是文件的hash值呢?

  大家都知道emule是基于P2P (Peer-to-peer的缩写,指的是点对点的意思的软件), 它采用了"多源文件传输协议”(MFTP,the Multisource FileTransfer Protocol)。在协议中,定义了一系列传输、压缩和打包还有积分的标准,emule 对于每个文件都有md5-hash的算法设置,这使得该文件独一无二,并且在整个网络上都可以追踪得到。

  MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,这一个Hash算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。

  当我们的文件放到emule里面进行共享发布的时候,emule会根据hash算法自动生成这个文件的hash值,他就是这个文件唯一的身份标志,它包含了这个文件的基本信息,然后把它提交到所连接的服务器。当有他人想对这个文件提出下载请求的时候, 这个hash值可以让他人知道他正在下载的文件是不是就是他所想要的。尤其是在文件的其他属性被更改之后(如名称等)这个值就更显得重要。而且服务器还提供了,这个文件当前所在的用户的地址,端口等信息,这样emule就知道到哪里去下载了。

  一般来讲我们要搜索一个文件,emule在得到了这个信息后,会向被添加的服务器发出请求,要求得到有相同hash值的文件。而服务器则返回持有这个文件的用户信息。这样我们的客户端就可以直接的和拥有那个文件的用户沟通,看看是不是可以从他那里下载所需的文件。

  对于emule中文件的hash值是固定的,也是唯一的,它就相当于这个文件的信息摘要,无论这个文件在谁的机器上,他的hash值都是不变的,无论过了多长时间,这个值始终如一,当我们在进行文件的下载上传过程中,emule都是通过这个值来确定文件。

  那么什么是userhash呢?

  道理同上,当我们在第一次使用emule的时候,emule会自动生成一个值,这个值也是唯一的,它是我们在emule世界里面的标志,只要你不卸载,不删除config,你的userhash值也就永远不变,积分制度就是通过这个值在起作用,emule里面的积分保存,身份识别,都是使用这个值,而和你的id和你的用户名无关,你随便怎么改这些东西,你的userhash值都是不变的,这也充分保证了公平性。其实他也是一个信息摘要,只不过保存的不是文件信息,而是我们每个人的信息。

  那么什么是hash文件呢?

  我们经常在emule日至里面看到,emule正在hash文件,这里就是利用了hash算法的文件校验性这个功能了,文章前面已经说了一些这些功能,其实这部分是一个非常复杂的过程,目前在ftp,bt等软件里面都是用的这个基本原理,emule里面是采用文件分块传输,这样传输的每一块都要进行对比校验,如果错误则要进行重新下载,这期间这些相关信息写入met文件,直到整个任务完成,这个时候part文件进行重新命名,然后使用move命令,把它传送到incoming文件里面,然后met文件自动删除,所以我们有的时候会遇到hash文件失败,就是指的是met里面的信息出了错误不能够和part文件匹配,另外有的时候开机也要疯狂hash,有两种情况一种是你在第一次使用,这个时候要hash提取所有文件信息,还有一种情况就是上一次你非法关机,那么这个时候就是要进行排错校验了。

  关于hash的算法研究,一直是信息科学里面的一个前沿,尤其在网络技术普及的今天,他的重要性越来越突出,其实我们每天在网上进行的信息交流安全验证,我们在使用的操作系统密钥原理,里面都有它的身影,特别对于那些研究信息安全有兴趣的朋友,这更是一个打开信息世界的钥匙,他在hack世界里面也是一个研究的焦点。

  常用HASH函数

  ·直接取余法: f(x):= x mod maxM ; maxM一般是不太接近 2^t 的一个质数。

  ·乘法取整法: f(x):=trunc((x/maxX)*maxlongit) mod maxM,主要用于实数。

  ·平方取中法: f(x):=(x*x div 1000 ) mod 1000000); 平方后取中间的,每位包含信息比较多。

哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。一般用于快速查找和加密算法。

MD5 和 SHA-1 可以说是目前应用最广泛的Hash算法。

Hash算法不管是MD5也好SHA1也好. 他们都是一种散列算法,其算法的特点是,可以把任意长度的字符串经过运算生成固定长度的字符串,并且这个产生的字符串代表着原来字符串里的所有字符。
简单的举个例子,就拿我上面说的那个帖子里面的 kc_ren(天堂龙)的例子:

admin 加密后:
16位8f00b204e9800998
32位d41d8cd98f00b204e9800998ecf8427e

其中不管是16位也好,32位也好其生成的字符串8f00b204e9800998 (16bit)或者d41d8cd98f00b204e9800998ecf8427e(32bit)他们表示着admin这个原始字符串.

只要admin这个字符串没有变,不管怎样重复使用MD5或者SHA1进行重新运算,其结果保持不变。

利用这个特点,在计算机安全学上,我们使用这种算法来保证数据完整性(Integrity)
这里提到计算机安全学,我在这里扩充一下:简单的概述计算机安全学,其实就是一门在讲关于 CIA
的学科。 C = Confidentiality (机密性), I = Integrity (完整性), A = Avalibility(可用性)

显而易见Hash算法,是用来保证 Integrity的算法。什么叫做完整性,不单单指数据不丢失,并且要保证数据没有被非法修改过。举个简单的例子。

比如:A 发了一个Email给B内容为"Hello",因为我们目前使用的以太网的特点,任何人在网络上都有可能截获这封Email,任何人都有可能,修改Hello这个字符串。那么当B收到这封A发来的Email的时候,怎么确定这封Email在传送过程中没有被修改过呢? 我们就使用了Hash算法来保证数据的完整性。他的工作方式是这样的:

1.A写一封Email内容为Hello
2.A用Hash算法对Hello进行编码(这里我用了编码,没有用加密这个词)
3.A将原始Email Hello 以及经过Hash算法编码过后的digest(原始Email的摘要信息)一起发送给B
  (因此,A给B发的Email由2部分组成,1是原始的Hello,2是经过Hash编码的摘要信息)

4.B接收到了A的Email,首先分离由2部分组成的邮件。
5.B通过Hash算法,根据收到的Email的内容,重新计算出该Email的摘要信息.
6.B将自己计算出的摘要信息和收到的摘要信息进行比较,如果比较结果一样,则认为这封Email在中途没有被修改过,否则的话,这封Email在中途一定被修改过,因此内容不可信。

至此,保证了原始数据的完整性。
很多人在使用Hash算法在对密码进行所谓的加密,其实是不妥的。这样做的最终结果最多最多就是能够让使用的这个软件的人放心。放心什么呢?放心的就是他们在你的软件里面所保存的密码,开发软件的人不能获得。除此之外,没有其他任何价值。如果一定要说出其他的价值的话。也就是如果开发软件的人员或者维护该软件的人员不小心将含有客户密码数据的数据库泄密的话,得到这个数据库的人,无法从数据库中获得那些客户的密码。 但是,大家想想清楚,我都获得了数据库的数据,我还需要那些密码干什么呢哈希表不可避免冲突(collision)现象:对不同的关键字可能得到同一哈希地址 即key1≠key2,而hash(key1)=hash(key2)。因此,在建造哈希表时不仅要设定一个好的哈希函数,而且要设定一种处理冲突的方法。可如下描述哈希表:根据设定的哈希函数H(key)和所选中的处理冲突的方法,将一组关键字映象到一个有限的地址连续的地址集(区间)上并以关键字在地址集中的“象”作为相应记录在表中的存储位置,这种表被称为哈希表。

  对于动态查找表而言,1) 表长不确定;2)在设计查找表时,只知道关键字所属范围,而不知道确切的关键字。因此,一般情况需建立一个函数关系,以f(key)作为关键字为key的录在表中的位置,通常称这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数)

  哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。

  现实中哈希函数是需要构造的,并且构造的好才能使用的好。

  那么这些Hash算法到底有什么用呢?

  Hash算法在信息安全方面的应用主要体现在以下的3个方面:

  (1) 文件校验

  我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。

  MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。

  (2) 数字签名

  Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。 对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。

  (3) 鉴权协议

  如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。

文件hash值

  MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,这一个Hash算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。

Hash函数还有另外的含义。实际中的Hash函数是指把一个大范围映射到一个小范围。把大范围映射到一个小范围的目的往往是为了节省空间,使得数据容易保存。除此以外,Hash函数往往应用于查找上。所以,在考虑使用Hash函数之前,需要明白它的几个限制:

1. Hash的主要原理就是把大范围映射到小范围;所以,你输入的实际值的个数必须和小范围相当或者比它更小。不然冲突就会很多。
2. 由于Hash逼近单向函数;所以,你可以用它来对数据进行加密。
3. 不同的应用对Hash函数有着不同的要求;比如,用于加密的Hash函数主要考虑它和单项函数的差距,而用于查找的Hash函数主要考虑它映射到小范围的冲突率。
应用于加密的Hash函数已经探讨过太多了,在作者的博客里面有更详细的介绍。所以,本文只探讨用于查找的Hash函数。
Hash函数应用的主要对象是数组(比如,字符串),而其目标一般是一个int类型。以下我们都按照这种方式来说明。
一般的说,Hash函数可以简单的划分为如下几类:
1. 加法Hash;
2. 位运算Hash;
3. 乘法Hash;
4. 除法Hash;
5. 查表Hash;
6. 混合Hash;
下面详细的介绍以上各种方式在实际中的运用。
一 加法Hash
所谓的加法Hash就是把输入元素一个一个的加起来构成最后的结果。标准的加法Hash的构造如下:

static int additiveHash(String key, int prime)
{
 int hash, i;
 for (hash = key.length(), i = 0; i < key.length(); i++)
  hash += key.charAt(i);
 return (hash % prime);
}

这里的prime是任意的质数,看得出,结果的值域为[0,prime-1]。

二 位运算Hash
这类型Hash函数通过利用各种位运算(常见的是移位和异或)来充分的混合输入元素。比如,标准的旋转Hash的构造如下:

static int rotatingHash(String key, int prime)
{
 int hash, i;
 for (hash=key.length(), i=0; i
   hash = (hash<<4>>28)^key.charAt(i);
 return (hash % prime);
}

先移位,然后再进行各种位运算是这种类型Hash函数的主要特点。比如,以上的那段计算hash的代码还可以有如下几种变形:

hash = (hash<<5>>27)^key.charAt(i);
hash += key.charAt(i);
hash += (hash << 10);
hash ^= (hash >> 6);
if((i&1) == 0)
{
hash ^= (hash<<7>>3);
 }
else
 {
 hash ^= ~((hash<<11>>5));
 }
hash += (hash<<5>
hash = key.charAt(i) + (hash<<6>>16) ? hash;
hash ^= ((hash<<5>>2));

三 乘法Hash
这种类型的Hash函数利用了乘法的不相关性(乘法的这种性质,最有名的莫过于平方取头尾的随机数生成算法,虽然这种算法效果并不好)。比如,

static int bernstein(String key)
{
 int hash = 0;
 int i;
 for (i=0; i
 return hash;
}

jdk5.0里面的String类的hashCode()方法也使用乘法Hash。不过,它使用的乘数是31。推荐的乘数还有:131, 1313, 13131, 131313等等。
使用这种方式的著名Hash函数还有:

// 32位FNV算法
int M_SHIFT = 0;
  public int FNVHash(byte[] data)
  {
      int hash = (int)2166136261L;
      for(byte b : data)
          hash = (hash * 16777619) ^ b;
      if (M_SHIFT == 0)
          return hash;
      return (hash ^ (hash >> M_SHIFT)) & M_MASK;
}

以及改进的FNV算法:

public static int FNVHash1(String data)
{
      final int p = 16777619;
      int hash = (int)2166136261L;
      for(int i=0;i
          hash = (hash ^ data.charAt(i)) * p;
      hash += hash << 13;
      hash ^= hash >> 7;
      hash += hash << 3;
      hash ^= hash >> 17;
      hash += hash << 5;
      return hash;
}

除了乘以一个固定的数,常见的还有乘以一个不断改变的数,比如:

static int RSHash(String str)
{
      int b    = 378551;
      int a    = 63689;
      int hash = 0;

     for(int i = 0; i < str.length(); i++)
     {
        hash = hash * a + str.charAt(i);
        a    = a * b;
     }
     return (hash & 0x7FFFFFFF);
}

虽然Adler32算法的应用没有CRC32广泛,不过,它可能是乘法Hash里面最有名的一个了。关于它的介绍,大家可以去看RFC 1950规范。

四 除法Hash
除法和乘法一样,同样具有表面上看起来的不相关性。不过,因为除法太慢,这种方式几乎找不到真正的应用。需要注意的是,我们在前面看到的hash的 结果除以一个prime的目的只是为了保证结果的范围。如果你不需要它限制一个范围的话,可以使用如下的代码替代”hash%prime”: hash = hash ^ (hash>>10) ^ (hash>>20)。
五 查表Hash
查表Hash最有名的例子莫过于CRC系列算法。虽然CRC系列算法本身并不是查表,但是,查表是它的一种最快的实现方式。下面是CRC32的实现:

static int crctab[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
int crc32(String key, int hash)
{
int i;
for (hash=key.length(), i=0; i
  hash = (hash >> 8) ^ crctab[(hash & 0xff) ^ k.charAt(i)];
return hash;
}

查表Hash中有名的例子有:Universal Hashing和Zobrist Hashing。他们的表格都是随机生成的。

六 混合Hash
混合Hash算法利用了以上各种方式。各种常见的Hash算法,比如MD5、Tiger都属于这个范围。它们一般很少在面向查找的Hash函数里面使用。

七 对Hash算法的评价
http://www.burtleburtle.net/bob/hash/doobs.html 这个页面提供了对几种流行Hash算法的评价。我们对Hash函数的建议如下:

1. 字符串的Hash。最简单可以使用基本的乘法Hash,当乘数为33时,对于英文单词有很好的散列效果(小于6个的小写形式可以保证没有冲突)。复杂一点可以使用FNV算法(及其改进形式),它对于比较长的字符串,在速度和效果上都不错。

public overrideunsafeint GetHashCode()
{//微软System.String 字符串哈希算法
    fixed (char*str= ((char*)this))
    {
        char* chPtr = str;
        intnum = 0x15051505;
        intnum2 = num;
        int* numPtr = (int*)chPtr;
        for (inti =this.Length;i > 0; i -= 4)
        {
            num = (((num << 5) +num) + (num >>0x1b)) ^ numPtr[0];
            if (i <= 2)
            {
                break;
            }
            num2 = (((num2 << 5) +num2) + (num2 >>0x1b)) ^ numPtr[1];
            numPtr += 2;
        }
        return (num + (num2 * 0x5d588b65));
    }
}

 
2. 长数组的Hash。可以使用http://burtleburtle.net/bob/c/lookup3.c这种算法,它一次运算多个字节,速度还算不错。?
0 0
原创粉丝点击