资料ADCDMA滤波

来源:互联网 发布:下载烈火软件 编辑:程序博客网 时间:2024/05/23 21:19

在主处理器允许下,
让外设和内存直接读写,这样就释放了主处理器,
这个东西就是DMA。
打个比方:
一个MCU是个公司。
老板就是主处理器
员工是外设
仓库就是内存
从前 仓库的东西都是老板管的。
员工需要原料工作,就一个个报给老板,老板去仓库里一个一个拿。
员工作好的东西,一个个给老板,老板一个个放进仓库里。
老板很累,虽然老板是超人,也受不了越来越多的员工和单子。
最后老板雇了一个仓库保管员,它就是DMA
他专门负责入库和出库,
只需要把出库和入库计划给老板过目
老板说 OK,就不管了。
后面的入库和出库过程,
员工只需要和这个仓库保管员打交道就可以了。
--------闲话,马七时常想,让设备与设备之间开DMA,岂不更牛X
比喻完成。
ADC 是个高速设备,前面提到。
而且 ADC 采集到的数据是不能直接用的。即使你再小心的设计外围电路,测的离谱的数据总会出现。
那么通常来说,是采集一批数据,然后进行处理,这个过程就是软件滤波。
DMA用到这里就很合适。让ADC 高速采集,把数据填充到RAM 中,填充一定数量,比如32 个,64 个MCU再来使用。
-----多一句,也可以说,单次ADC 毫无意义。
下面我们来具体介绍,如何使用DMA来进行ADC 操作。
初始化函数包括两部分,DMA 初始化和ADC 初始化
我们有多个管理员--DMA
一个管理员当然不止管一个DMA 操作。所以DMA有多个Channel

以下是程序分析:
程序基于STM32F103VET6,库函数实现
RCC部分:(忽略系统时钟配置)
   //启动DMA时钟
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);   
    //启动ADC1时钟   
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
GPIO部分:(ADC引脚参见上表)
   //ADC_CH10--> PC0   
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;   
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;//模拟输入   
    GPIO_Init(GPIOC, &GPIO_InitStructure);
    // PC2
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;   
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;   
    GPIO_Init(GPIOC, &GPIO_InitStructure);  
ADC1配置:(两外部输入,另采样内部温度传感器)
void ADC1_Configuration(void)   
{   
    ADC_InitTypeDef ADC_InitStructure;   
   
    ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //转换模式为独立,还有交叉等非常多样的选择   
    ADC_InitStructure.ADC_ScanConvMode = ENABLE;   
    ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;  //连续转换开启   
    ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;   
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;   
    ADC_InitStructure.ADC_NbrOfChannel = 3;     //设置转换序列长度为3,三通道   
    ADC_Init(ADC1, &ADC_InitStructure);   
      
    //ADC内置温度传感器使能(要使用片内温度传感器,切忌要开启它)   
    ADC_TempSensorVrefintCmd(ENABLE);   
      
    //常规转换序列1:通道10   
    ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_239Cycles5);   
    //常规转换序列2:通道16(内部温度传感器),采样时间>2.2us,(239cycles)   
    ADC_RegularChannelConfig(ADC1, ADC_Channel_16, 2, ADC_SampleTime_239Cycles5);
     ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 3, ADC_SampleTime_239Cycles5);  
     //输入参数:ADC外设,ADC通道,转换序列顺序,采样时间
    // Enable ADC1   
    ADC_Cmd(ADC1, ENABLE);   
    // 开启ADC的DMA支持(要实现DMA功能,还需独立配置DMA通道等参数)   
    ADC_DMACmd(ADC1, ENABLE);   
      
    // 下面是ADC自动校准,开机后需执行一次,保证精度   
    // Enable ADC1 reset calibaration register   
    ADC_ResetCalibration(ADC1);   
    // Check the end of ADC1 reset calibration register   
    while(ADC_GetResetCalibrationStatus(ADC1));   
   
    // Start ADC1 calibaration   
    ADC_StartCalibration(ADC1);   
    // Check the end of ADC1 calibration   
    while(ADC_GetCalibrationStatus(ADC1));   
    // ADC自动校准结束---------------   
     ADC_SoftwareStartConvCmd(ADC1, ENABLE); //ADC启动   
}  
DMA配置:(无软件滤波)
void DMA_Configuration(void)   
{   
    DMA_InitTypeDef DMA_InitStructure;   
      
    DMA_DeInit(DMA1_Channel1);   
    DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;   //DMA外设地址,在头部定义
    DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value;         //内存地址
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;                 //外设至内存模式
    //BufferSize=2,因为ADC转换序列有2个通道   
    //如此设置,使序列1结果放在AD_Value[0],序列2结果放在AD_Value[1]   
    DMA_InitStructure.DMA_BufferSize = 3;                                           //一次转换三个
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;   //接受一次后,设备地址不后移
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;        //接受一次后,内存地址后移
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;   //每次传输半字
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;   
    //循环模式开启,Buffer写满后,自动回到初始地址开始传输   
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;   
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;   
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;   
    DMA_Init(DMA1_Channel1, &DMA_InitStructure);   
    //配置完成后,启动DMA通道   
    DMA_Cmd(DMA1_Channel1, ENABLE);   
}
此DMA例程用于单次ADC转换,配合软件滤波可做如下改动:
全局声明:
vu16 AD_Value[30][3];   //AD采样值
vu16 After_filter[3];   //AD滤波后
DMA部分:(带中断滤波)
void DMA_Configuration(void)   
{   
    DMA_InitTypeDef DMA_InitStructure;   
      
    DMA_DeInit(DMA1_Channel1);   
    DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;   
    DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value;   
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;   
    //BufferSize=2,因为ADC转换序列有2个通道   
    //如此设置,使序列1结果放在AD_Value[0],序列2结果放在AD_Value[1]   
    DMA_InitStructure.DMA_BufferSize = 90;   
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;   
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;   
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;   
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;   
    //循环模式开启,Buffer写满后,自动回到初始地址开始传输   
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;   
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;   
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;   
    DMA_Init(DMA1_Channel1, &DMA_InitStructure);   
    //配置完成后,启动DMA通道   
    DMA_Cmd(DMA1_Channel1, ENABLE);
DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE); //使能DMA传输完成中断
   
}
NVIC部分:
  NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQChannel;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);          // Enable the DMA Interrupt
stm32f10x_it.c文件:
void DMA1_Channel1_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC1) != RESET)
{
  filter();
  DMA_ClearITPendingBit(DMA1_IT_TC1);
}
}
滤波部分:(均值滤波)
#define N 30
void filter(void)
{
   int  sum = 0;
   u8 count,i;
   for(i=0;i<2;i++)
   {
    for ( count=0;count<N;count++)
    {
       sum += AD_Value[count][i];
    }
    After_filter[i]=sum/N;
    sum=0;
   }
   
}
采样数据与实际电压/温度转换:
u16 GetTemp(u16 advalue)   
{   
    u32 Vtemp_sensor;   
    s32 Current_Temp;   
      
//    ADC转换结束以后,读取ADC_DR寄存器中的结果,转换温度值计算公式如下:   
//          V25 - VSENSE   
//  T(℃) = ------------  + 25   
//           Avg_Slope   
//   V25:  温度传感器在25℃时 的输出电压,典型值1.43 V。   
//  VSENSE:温度传感器的当前输出电压,与ADC_DR 寄存器中的结果ADC_ConvertedValue之间的转换关系为:   
//            ADC_ConvertedValue * Vdd   
//  VSENSE = --------------------------   
//            Vdd_convert_value(0xFFF)   
//  Avg_Slope:温度传感器输出电压和温度的关联参数,典型值4.3 mV/℃。   
   
    Vtemp_sensor = advalue * 330 / 4096;   
    Current_Temp = (s32)(143 - Vtemp_sensor)*10000/43 + 2500;   
    return (s16)Current_Temp;   
}   
   
u16 GetVolt(u16 advalue)   
{
   
    return (u16)(advalue * 330 / 4096);   
}
滤波部分思路为:ADC正常连续采样三个通道,由DMA进行搬运,一次搬运90个数据,即为1-2-3-1-2-3循环,每个通道各30次,存在 AD_Value[30][3]中,30为每通道30个数据,3为三个通道,根据二维数组存储方式此过程自动完成。而每当一次DMA过程结束后,触发 DMA完成中断,进入滤波函数将30个数据均值成一个, 存入After_filter[3]。整个过程滤波计算需要CPU参与,而在程序中采样结果值随时均为最新,尽力解决程序复杂性和CPU负载。 x=GetVolt(After_filter[0]);即可得到即时电压值。

 

几种软件滤波算法的原理和比较(带源码)

第1种方法限幅滤波法(又称程序判断滤波法)

  A方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。

  B优点: 能有效克服因偶然因素引起的脉冲干扰。

  C缺点: 无法抑制那种周期性的干扰,平滑度差。

第2种方法中位值滤波法

  A方法: 连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。

  B优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。

  C缺点: 对流量、速度等快速变化的参数不宜。

第3种方法算术平均滤波法

  A方法: 连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般流量,N=12;压力:N=4。

  B优点: 适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。

  C缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM 。

第4种方法递推平均滤波法(又称滑动平均滤波法)

  A方法: 把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则) 。把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。

  B优点: 对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统。

  C缺点: 灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。

第5种方法中位值平均滤波法(又称防脉冲干扰平均滤波法)

  A方法: 相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。N值的选取:3~14。

  B优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

  C缺点: 测量速度较慢,和算术平均滤波法一样,比较浪费RAM。

第6种方法限幅平均滤波法

  A方法: 相当于“限幅滤波法”+“递推平均滤波法”,每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。

  B优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

  C缺点: 比较浪费RAM 。

第7种方法:一阶滞后滤波法

  A方法: 取a=0~1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。

  B优点: 对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合。

  C缺点:相位滞后,灵敏度低,滞后程度取决于a值大小,不能消除滤波频率高于采样频率的1/2的干扰信号。

第8种方法加权递推平均滤波法

  A方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权,通常是,越接近现时刻的资料,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。

  B优点: 适用于有较大纯滞后时间常数的对象和采样周期较短的系统。

  C缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。

第9种方法消抖滤波法

  A方法: 设置一个滤波计数器,将每次采样值与当前有效值比较: 如果采样值=当前有效值,则计数器清零。如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器。

  B优点: 对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。

  C缺点: 对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。

第10种方法限幅消抖滤波法

  A方法: 相当于“限幅滤波法”+“消抖滤波法”,先限幅后消抖。

  B优点: 继承了“限幅”和“消抖”的优点,改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。

  C缺点: 对于快速变化的参数不宜。

第11种方法IIR 数字滤波器

  A方法: 确定信号带宽, 滤之。 Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)。

  B优点: 高通,低通,带通,带阻任意。设计简单(用matlab)。

  C缺点: 运算量大。

部分程序:

1、限副滤波
/* A值可根据实际情况调整
value为有效值,new_value为当前采样值
滤波程序返回有效的实际值 */

#define A 10
char value;
char filter()
{
char new_value;
new_value = get_ad();
if ( ( new_value - value > A ) || ( value - new_value > A )
return value;
return new_value;

}

2、中位值滤波法
/* N值可根据实际情况调整
排序采用冒泡法*/

#define N 11
char filter()
{
char value_buf[N];
char count,i,j,temp;
for ( count=0;count<N;count++)
{
   value_buf[count] = get_ad();
   delay();
}
for (j=0;j<N-1;j++)
{
   for (i=0;i<N-j;i++)
   {
    if ( value_buf>value_buf[i+1] )
    {
     temp = value_buf;
     value_buf = value_buf[i+1];
     value_buf[i+1] = temp;
    }
   }
}
return value_buf[(N-1)/2];
}

3、算术平均滤波法
/*
*/

#define N 12
char filter()
{
int sum = 0;
for ( count=0;count<N;count++)
{
   sum + = get_ad();
   delay();
}
return (char)(sum/N);
}

4、递推平均滤波法(又称滑动平均滤波法
/*
*/

#define N 12
char value_buf[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buf[i++] = get_ad();
if ( i == N ) i = 0;
for ( count=0;count<N,count++)
sum = value_buf[count];
return (char)(sum/N);
}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
/*
*/

#define N 12
char filter()
{
char count,i,j;
char value_buf[N];
int sum=0;
for (count=0;count<N;count++)
{
   value_buf[count] = get_ad();
   delay();
}
for (j=0;j<N-1;j++)
{
   for (i=0;i<N-j;i++)
   {
    if ( value_buf>value_buf[i+1] )
    {
     temp = value_buf;
     value_buf = value_buf[i+1];
     value_buf[i+1] = temp;
    }
   }
}
for(count=1;count<N-1;count++)
sum += value[count];
return (char)(sum/(N-2));
}

6、限幅平均滤波法
/*
*/
略 参考子程序1、3


7、一阶滞后滤波法
/* 为加快程序处理速度假定基数为100,a=0~100 */

#define a 50
char value;
char filter()
{
char new_value;
new_value = get_ad();
return (100-a)*value + a*new_value;
}


8、加权递推平均滤波法
/* coe数组为加权系数表,存在程序存储区。*/

#define N 12
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buf[N];
int sum=0;
for (count=0,count<N;count++)
{
   value_buf[count] = get_ad();
   delay();
}
for (count=0,count<N;count++)
sum += value_buf[count]*coe[count];
return (char)(sum/sum_coe);
}


9、消抖滤波法

#define N 12
char filter()
{
char count=0;
char new_value;
new_value = get_ad();
while (value !=new_value);
{
   count++;
   if (count>=N) return new_value;
   delay();
   new_value = get_ad();
}
return value;
}

10、限幅消抖滤波法
/*
*/
略 参考子程序1、9


 

0 0
原创粉丝点击