HDU 4280 Island Transport(网络流)

来源:互联网 发布:你眼中的世界知乎 编辑:程序博客网 时间:2024/05/08 01:53

转载请注明出处:http://blog.csdn.net/u012860063

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4280




Problem Description
  In the vast waters far far away, there are many islands. People are living on the islands, and all the transport among the islands relies on the ships.
  You have a transportation company there. Some routes are opened for passengers. Each route is a straight line connecting two different islands, and it is bidirectional. Within an hour, a route can transport a certain number of passengers in one direction. For safety, no two routes are cross or overlap and no routes will pass an island except the departing island and the arriving island. Each island can be treated as a point on the XY plane coordinate system. X coordinate increase from west to east, and Y coordinate increase from south to north.
  The transport capacity is important to you. Suppose many passengers depart from the westernmost island and would like to arrive at the easternmost island, the maximum number of passengers arrive at the latter within every hour is the transport capacity. Please calculate it.
 

Input
  The first line contains one integer T (1<=T<=20), the number of test cases.
  Then T test cases follow. The first line of each test case contains two integers N and M (2<=N,M<=100000), the number of islands and the number of routes. Islands are number from 1 to N.
  Then N lines follow. Each line contain two integers, the X and Y coordinate of an island. The K-th line in the N lines describes the island K. The absolute values of all the coordinates are no more than 100000.
  Then M lines follow. Each line contains three integers I1, I2 (1<=I1,I2<=N) and C (1<=C<=10000) . It means there is a route connecting island I1 and island I2, and it can transport C passengers in one direction within an hour.
  It is guaranteed that the routes obey the rules described above. There is only one island is westernmost and only one island is easternmost. No two islands would have the same coordinates. Each island can go to any other island by the routes.
 

Output
  For each test case, output an integer in one line, the transport capacity.
 

Sample Input
25 73 33 03 10 04 51 3 32 3 42 4 31 5 64 5 31 4 43 4 26 7-1 -10 10 21 01 12 31 2 12 3 64 5 55 6 31 4 62 5 53 6 4
 

Sample Output
96
 

Source
2012 ACM/ICPC Asia Regional Tianjin Online
 

Recommend
liuyiding   |   We have carefully selected several similar problems for you:  4277 4267 4268 4269 4270 


题意:有N个岛,M条无向路 每个路有一最大允许的客流量,求从最西的那个岛最多能运用多少乘客到最东的那个岛。


直接上模板:

#include <cstdio>#include <cmath>#include <cstring>#include <string>#include <cstdlib>#include <climits>#include <ctype.h>#include <vector>#include <queue>#include <deque>#include <set>#include <map>#include <iostream>#include <algorithm>using namespace std;#define PI acos(-1.0)#define VM 100047#define EM 400047int inf = 0x3f3f3f3f;struct E{    int to, frm, nxt, cap;}edge[EM];int head[VM],e,n,m,src,des;int dep[VM], gap[VM];void addedge(int cu, int cv, int cw){    edge[e].frm = cu;    edge[e].to = cv;    edge[e].cap = cw;    edge[e].nxt = head[cu];    head[cu] = e++;    edge[e].frm = cv;    edge[e].to = cu;    edge[e].cap = 0;    edge[e].nxt = head[cv];    head[cv] = e++;}int que[VM];void BFS(){    memset(dep, -1, sizeof(dep));    memset(gap, 0, sizeof(gap));    gap[0] = 1;    int front = 0, rear = 0;    dep[des] = 0;    que[rear++] = des;    int u, v;    while (front != rear)    {        u = que[front++];        front = front%VM;        for (int i=head[u]; i!=-1; i=edge[i].nxt)        {            v = edge[i].to;            if (edge[i].cap != 0 || dep[v] != -1)                continue;            que[rear++] = v;            rear = rear % VM;            ++gap[dep[v] = dep[u] + 1];        }    }}int cur[VM],stack[VM];int Sap()       //sap模板{    int res = 0;    BFS();    int top = 0;    memcpy(cur, head, sizeof(head));    int u = src, i;    while (dep[src] < n)    {        if (u == des)        {            int temp = inf, inser = n;            for (i=0; i!=top; ++i)                if (temp > edge[stack[i]].cap)                {                    temp = edge[stack[i]].cap;                    inser = i;                }            for (i=0; i!=top; ++i)            {                edge[stack[i]].cap -= temp;                edge[stack[i]^1].cap += temp;            }            res += temp;            top = inser;            u = edge[stack[top]].frm;        }        if (u != des && gap[dep[u] -1] == 0)            break;        for (i = cur[u]; i != -1; i = edge[i].nxt)            if (edge[i].cap != 0 && dep[u] == dep[edge[i].to] + 1)                break;        if (i != -1)        {            cur[u] = i;            stack[top++] = i;            u = edge[i].to;        }        else        {            int min = n;            for (i = head[u]; i != -1; i = edge[i].nxt)            {                if (edge[i].cap == 0)                    continue;                if (min > dep[edge[i].to])                {                    min = dep[edge[i].to];                    cur[u] = i;                }            }            --gap[dep[u]];            ++gap[dep[u] = min + 1];            if (u != src)                u = edge[stack[--top]].frm;        }    }    return res;}int main(){    int T, i;    scanf("%d", &T);    while (T--)    {        scanf("%d%d", &n, &m);        int x, y;        int Min = inf, Max = -inf;        for (i=1; i<=n; ++i)       //找出起点src 终点des        {            scanf("%d%d", &x, &y);            if (x <= Min)            {                src = i;                Min = x;            }            if (x >= Max)            {                des = i;                Max = x;            }        }        e = 0;        memset(head, -1, sizeof(head));        int u, v, c;        for (i=0; i!=m; ++i)        {            scanf("%d%d%d", &u, &v, &c);            addedge(u,v,c);            addedge(v,u,c);        }        int ans = Sap();        printf("%d\n", ans);    }    return 0;}


7 0
原创粉丝点击