Robot Jacobian expressed in end effector frame

来源:互联网 发布:淘宝企业店铺要纳税吗 编辑:程序博客网 时间:2024/06/15 13:26
A Jacobian is a vector derivative with respect to another vector. If we have a vector valued function of a vector of variables$ f(x)$ , the Jacobian is a matrix of partial derivatives where there exist one partial derivative for each combination of components of the vectors. The Jacobian matrix contains all of the information necessary to relate a change in any component of$ x$ to a change in any component of$ f$ . The Jacobian is usually written as$ J(f,x)$ .

$\displaystyle J(f,x) = \frac{dx}{dy} =  \begin{bmatrix} \frac{\partial f_{1}}......}} & \cdots & \cdots & \frac{\partial f_{M}}{\partial x_{N}}   \end{bmatrix}$(22)

The following section will explain in detail how the Jacobian matrix is computed and finally the entire Jacobian matrix for the 5-DOF robotic arm is computed. Consider a simple 2D robot arm with two 1-DOF rotational joints:
Figure 7: 2D robot arm with two 1-DOF rotational joints
Image j1

The Jacobian matrix $ J(e,\Phi)$ shows how each component of$ e$ varies with respect to each joint angle. Here$ e$ is a point on the end effector and$ \Phi$ is the joint angle.$ e_{x}$ and$ e_{y}$ are the components of$ e$ in the 2D plane.

$\displaystyle J(e,\Phi) = \begin{bmatrix} \frac{\partial e_{x}}{\partial \phi......\partial \phi_{1}} & \frac{\partial e_{y}}{\partial \phi_{2}}  \end{bmatrix}$(23)

Jacobian matrix can be determined either by differentiation of the forward kinematics equation or by iterative recursive equation[31]. The iterative recursive equation describes a relationship between joint angle rate of change $ (\dot{\theta})$ and the translational and rotational velocities of the end effector $ (\dot{X})$ which is expressed as,

$\displaystyle {}^N\!\dot{X} = {}^N\!J(\theta)\dot{\theta}$(24)

The above equation can be expanded to,

$\displaystyle {}^N\!\dot{X} = \begin{bmatrix}{}^N\!v_{N} {}^N\!\omega_{N}\end......\dot{\theta_{1}} \dot{\theta_{2}} \cdots \dot{\theta_{N}} \end{bmatrix}$(25)

The linear translational and rotational velocity can be iteratively computed as follows,

$\displaystyle {}^{i+1}\!\omega_{i+1} = ({}^{i+1}\!_{i}R)({}^{i}\!\omega_{i})+ \begin{bmatrix}0 0 \dot{\theta}_{i+1} \end{bmatrix}$(26)

$\displaystyle {}^{i+1}\!v_{i+1} = ({}^{i+1}\!_{i}R)({}^{i}\!\omega \times {}^{i}\!P_{i+1} + {}^{i}\!v_{i}) + \begin{bmatrix}0 0 \dot{d}_{i+1} \end{bmatrix}$(27)

In the above equation $ {}^{i+1}\!_{i}R$ and$ {}^{i}\!P_{i+1}$ are the rotation and translation parameters related to adjacent joints and this can be calculated by assigning coordinate frames to each joints as mentioned in [31]. Denavit-Hartenberg parameters, link length ($ a_i$ ) , link twist ($ \alpha_i$ ) and link offset ($ d_i$ ) which are constant geometric quantities, are identified for each joint, after the coordinate frame assignment. A homogeneous transformation matrix$ T_i$ which refers the position and orientation of the$ (i)^{th}$ frame to the position and orientation of the$ (i-1)^{th}$ frame can be calculated from the D-H parameters and following generalized matrix form,

$\displaystyle {}^{i-1}\!_{i}T =  \begin{bmatrix} c\theta_i & -s\theta_i & 0 &......ha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_i  0 & 0 & 0 & 1  \end{bmatrix}$(28)

Where $ c\theta_i = cos \theta_i$ ,$ s\theta_i= sin \theta_i$ and$ \theta_i$ is the joint angle between the two joint axis. In this homogeneous transformation matrix upper left$ 3 \times 3$ matrix refer to the rotation which constitutes of two parts. One, ($ Rot(z,\theta_i)$ ) is due to the rotation of joint axis and the other,($ Rot(x,\alpha_i)$ ) due to link twist. The right$ 1 \times 4$ matrix refer to the translation part whose components are link length$ a_i$ and link offset$ d_i$ .
Rotation and translation parameters for each joint required in equations (26) and (27) can be obtained from this homogeneous transformation matrix and Jacobian matrix can be expressed stacking the result for all joints.
Following is the image of the robot arm under consideration whose coordinate frames are assigned for all joints.
Figure 8: Robot arm with coordinate frames assigned to each joints.
Image Image5

The D-H parameters can be expressed as,

Table 2: D-H Parameters
$ i$$ \alpha_{i-1}$$ a_{i-1}$$ d_i$$ \theta_i$$ 1$000$ \theta_1$$ 2$$ 90$$ l1$0$ \theta_2$$ 3$$ 90$$ l2$$ d1$$ \theta_3$$ 4$$ 90$$ l3$0$ \theta_4$$ 5$0$ l4$0$ \theta_5$$ 6$0$ l5$00




The Jacobian matrix calculated using iterative recursive estimation is as follows. The complete calculation steps are given in the appendix.

$\displaystyle J(\theta)= \begin{bmatrix} j_{11} & j_{12} & 0 & j_{14} & 0 ......51} & j_{52} & j_{53} & 0 & 0  j_{61} & j_{62} & 0 & 1 & 1  \end{bmatrix}$(29)

$\displaystyle \begin{tabular}{l l l} $j_{11}$ & = & (s5s4s3 - c5c4s3)$l_1$ +......3  $j_{63}$& = & 0  $j_{64}$& = & 1  $j_{65}$& = & 1  \end{tabular}$ 



Where, l1, l2 l3, l4, l5 are link lengths, d1 is the link offset at $ 3^rd$ joint,
$ \theta_1$ ,$ \theta_2$ ,$ \theta_3$ ,$ \theta_4$ ,$ \theta_5$ are joint angles,
s1,s2,s3,s4,s5 corresponds to sine $ \theta_1$ , sine$ \theta_2$ , sine$ \theta_3$ , sine$ \theta_4$ , sine$ \theta_5$ ,
c1,c2,c3,c4,c5 corresponds to cosine $ \theta_1$ , cosine$ \theta_2$ , cosine$ \theta_3$ , cosine$ \theta_4$ , cosine$ \theta_5$ .
0 0
原创粉丝点击
热门问题 老师的惩罚 人脸识别 我在镇武司摸鱼那些年 重生之率土为王 我在大康的咸鱼生活 盘龙之生命进化 天生仙种 凡人之先天五行 春回大明朝 姑娘不必设防,我是瞎子 苹果手机在车上不能充电怎么办 遥控钥匙打不开车门怎么办 苹果访问限制密码忘记了怎么办 苹果手机忘记访问限制密码怎么办 苹果忘记访问限制密码怎么办 苹果限制访问密码忘了怎么办 东奥会计书盗版怎么办 合同封印少盖一页怎么办 玩单机游戏屏幕输入不支持怎么办 汽车不小心陷进泥潭怎么办 招商银行信用卡激活电话换了怎么办 冲鼻子是耳朵进水了怎么办 不小心点了赞怎么办 小车间太热了怎么办 在车间上班好热怎么办 英雄杀四星李逵不拉仇恨怎么办 手表玻璃里面有雾水怎么办 dw手表玻璃碎了怎么办 手表玻璃面花了怎么办 有个窝囊的父母怎么办 苹果7p玩游戏卡怎么办 三星玩游戏很卡怎么办 三星打游戏很卡怎么办 香水喷到眼睛里怎么办 萍果平板锁机怎么办? 苹果6开机卡死怎么办 辐射4发夹用完了怎么办 辐射4多的武器怎么办 大姨妈恶心想吐怎么办 玩完游戏想吐怎么办 玩完了海盗船想吐怎么办 戴眼镜恶心想吐怎么办 玩电脑恶心想吐怎么办 玩游戏玩的头疼怎么办 玩游戏头疼想吐怎么办 游戏玩久了头疼怎么办 有3d眩晕症怎么办 玩游戏晕3d怎么办 梦幻西游亏的钱怎么办 普惠卡销户了钱存进去了怎么办 梦幻西游现金变储备了怎么办