jvm笔记

来源:互联网 发布:ios 数组替换指定位置 编辑:程序博客网 时间:2024/04/26 10:49

一、Java技术体系


Java技术体系可以分为四个平台,分别为:

JavaCard:支持一些Java小程序(Applets)运行在小内存设备(如智能卡)上的平台。

JavaME(Micro Edition):支持Java程序运行在移动终端(手机、PDA)上的平台,对Java API有所精简,并加入了针对移动终端的支持,这个版本以前称为J2ME。

JavaSE(Standard Edition):支持面向桌面级应用(如Windows下的应用程序)的Java平台,提供了完整的Java核心API,这个版本以前称为J2SE。

JavaEE(Enterprise Edition):支持使用多层架构的企业应用(如ERP、CRM应用)的Java平台,除了提供Java SE API外,还对其做了大量的扩充①并提供了相关的部署支持,这个版本以前称为J2EE

 

二、Java内存区域与内存溢出异常

1.        运行时数据区域http://www.myexception.cn/program/1645903.html


l  程序计数器 是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器

l  Java虚拟机栈与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(Stack Frame①)用于存储局部变量表、操作栈、动态链接、方法出口等信息每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它不等同于对象本身,根据不同的虚拟机实现,它可能是一个指向对象起始地址的引用指针,也可能指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。在Java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果虚拟机栈可以动态扩展(当前大部分的Java虚拟机都可动态扩展,只不过Java虚拟机规范中也允许固定长度的虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。

l  本地方法栈 本地方法栈(Native MethodStacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务

l  Java堆对于大多数应用来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”(Garbage CollectedHeap,幸好国内没翻译成“垃圾堆”)。如果从内存回收的角度看,由于现在收集器基本都是采用的分代收集算法,所以Java堆中还可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。

l  方法区 http://blog.csdn.net/changyuming/article/details/3148245。方法区(MethodArea)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量(如String)、静态变量、即时编译器编译后的代码等数据。类加载器子系统将会提取class文件里面的类型信息,并将这些类型信息存放到方法区中。每个class都是被一个类加载器加载到方法区的,类信息中的到类的ClassLoader对象的引用,表明了当前的类是被哪个类加载器加载的, 这个信息同时也标示了当前的类型的名称空间。由不同的类装载器装载的类将被放在虚拟机内部的不同命名空间。命名空间由一系列唯一的名称组成,每一个被装载的类有一个名字。JAVA虚拟机为每一个类装载器维护一个名字空间。如果一个类型是由用户类加载器加载的,那么jvm会将这个类加载器的一个引用作为类型信息的一部分保存在方法区中。jvm在动态链接的时候需要这个信息。当解析一个类型到另一个类型的引用的时候,jvm需要保证这两个类型的类加载器是相同的。

l  运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。 Java虚拟机对Class文件的每一部分(自然也包括常量池)的格式都有严格的规定,每一个字节用于存储哪种数据都必须符合规范上的要求,这样才会被虚拟机认可、装载和执行。但对于运行时常量池,Java虚拟机规范没有做任何细节的要求,不同的提供商实现的虚拟机可以按照自己的需要来实现这个内存区域。不过,一般来说,除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中①。运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只能在编译期产生,也就是并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法

2.        对象访问

Object obj = newObject(); 假设这句代码出现在方法体中,那“Object obj”这部分的语义将会反映到Java栈的本地变量表中,作为一个reference类型数据出现。而“new Object()”这部分的语义将会反映到Java堆中,形成一块存储了Object类型所有实例数据值(Instance Data,对象中各个实例字段的数据)的结构化内存,根据具体类型以及虚拟机实现的对象内存布局(Object Memory Layout)的不同,这块内存的长度是不固定的。另外,在Java堆中还必须包含能查找到此对象类型数据(如对象类型、父类、实现的接口、方法等)的地址信息,这些类型数据则存储在方法区中。由于reference类型在Java虚拟机规范里面只规定了一个指向对象的引用,并没有定义这个引用应该通过哪种方式去定位,以及访问到Java堆中的对象的具体位置,因此不同虚拟机实现的对象访问方式会有所不同,主流的访问方式有两种:使用句柄和直接指针。如果使用句柄访问方式,Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据和类型数据各自的具体地址信息,如图2-2所示。


如果使用直接指针访问方式,Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,reference中直接存储的就是对象地址,如图2-3所示。


这两种对象的访问方式各有优势,使用句柄访问方式的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。就本书讨论的主要虚拟机Sun HotSpot而言,它是使用第二种方式进行对象访问的,但从整个软件开发的范围来看,各种语言和框架使用句柄来访问的情况也十分常见。

3.        OutOfMemoryError异常

l  Java堆溢出

Java堆用于储存对象实例,我们只要不断地创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,就会在对象数量到达最大堆的容量限制后产生内存溢出异常。

例如/** * VM Args:-Xms20m-Xmx20m -XX:+HeapDumpOnOutOfMemoryError * @author zzm */

public classHeapOOM { static class OOMObject { }

 public static void main(String[] args) {

List<OOMObject>list = new ArrayList<OOMObject>();

while (true) {

 list.add(new OOMObject()); }}}

Java堆内存的OOM异常是实际应用中最常见的内存溢出异常情况。出现Java堆内存溢出时,异常堆栈信息“java.lang.OutOfMemoryError”会跟着进一步提示“Java heapspace”。要解决这个区域的异常,一般的手段是首先通过内存映像分析工具(如Eclipse Memory Analyzer)对dump出来的堆转储快照进行分析,重点是确认内存中的对象是否是必要的,也就是要先分清楚到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)。图2-5显示了使用Eclipse Memory Analyzer打开的堆转储快照文件。 如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链。于是就能找到泄漏对象是通过怎样的路径与GC Roots相关联并导致垃圾收集器无法自动回收它们的。掌握了泄漏对象的类型信息,以及GC Roots引用链的信息,就可以比较准确地定位出泄漏代码的位置。如果不存在泄漏,换句话说就是内存中的对象确实都还必须存活着,那就应当检查虚拟机的堆参数(-Xmx与-Xms),与机器物理内存对比看是否还可以调大,从代码上检查是否存在某些对象生命周期过长、持有状态时间过长的情况,尝试减少程序运行期的内存消耗。

l  虚拟机栈和本地方法栈溢出

关于虚拟机栈和本地方法栈,在Java虚拟机规范中描述了两种异常: 如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。 如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。 这里把异常分成两种情况看似更加严谨,但却存在着一些互相重叠的地方:当栈空间无法继续分配时,到底是内存太小,还是已使用的栈空间太大,其本质上只是对同一件事情的两种描述而已。在笔者的实验中,如果将实验范围限制于单线程中的操作,尝试了下面两种方法均无法让虚拟机产生OutOfMemoryError异常,尝试的结果都是获得StackOverflowError异常,测试代码如清单2-2所示。使用-Xss参数减少栈内存容量。结果:抛出StackOverflowError异常,异常出现时输出的栈深度相应缩小。定义了大量的本地变量,增加此方法帧中本地变量表的长度。结果:抛出StackOverflowError异常时输出的栈深度相应缩小。

如果测试时不限于单线程,通过不断地建立线程的方式倒是可以产生内存溢出异常,如代码清单2-3所示。但是,这样产生的内存溢出异常与栈空间是否足够大并不存在任何联系,或者准确地说,在这种情况下,给每个线程的栈分配的内存越大,反而越容易产生内存溢出异常。原因其实不难理解,操作系统分配给每个进程的内存是有限制的,譬如32位的Windows限制为2GB。虚拟机提供了参数来控制Java堆和方法区的这两部分内存的最大值。剩余的内存为2GB(操作系统限制)减去Xmx(最大堆容量),再减去MaxPermSize(最大方法区容量),程序计数器消耗内存很小,可以忽略掉。如果虚拟机进程本身耗费的内存不计算在内,剩下的内存就由虚拟机栈和本地方法栈“瓜分”了。每个线程分配到的栈容量越大,可以建立的线程数量自然就越少,建立线程时就越容易把剩下的内存耗尽。这一点读者需要在开发多线程应用的时候特别注意,出现StackOverflowError异常时有错误堆栈可以阅读,相对来说,比较容易找到问题的所在。而且,如果使用虚拟机默认参数,栈深度在大多数情况下(因为每个方法压入栈的帧大小并不是一样的,所以只能说大多数情况下)达到1000~2000完全没有问题,对于正常的方法调用(包括递归),这个深度应该完全够用了。但是,如果是建立过多线程导致的内存溢出,在不能减少线程数或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程。

l  方法区溢出

方法区用于存放Class的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。对于这个区域的测试,基本的思路是运行时产生大量的类去填满方法区,直到溢出。虽然直接使用Java SE API也可以动态产生类(如反射时的GeneratedConstructorAccessor和动态代理等),但在本次实验中操作起来比较麻烦。在代码清单2-5中,笔者借助CGLib①直接操作字节码运行时,生成了大量的动态类。值得特别注意的是,我们在这个例子中模拟的场景并非纯粹是一个实验,这样的应用经常会出现在实际应用中:当前的很多主流框架,如Spring和Hibernate对类进行增强时,都会使用到CGLib这类字节码技术,增强的类越多,就需要越大的方法区来保证动态生成的Class可以加载入内存。

三、垃圾收集器与内存分配策略

1.        对象已死吗?

a)        引用计数算法给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器都为0的对象就是不可能再被使用的。。但是,Java语言中没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间的相互循环引用的问题。

b)        根搜索算法  在主流的商用程序语言中(Java和C#,甚至包括前面提到的古老的Lisp),都是使用根搜索算法(GCRoots Tracing)判定对象是否存活的。这个算法的基本思路就是通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的

以下对象会被认为是root对象:

        被启动类(bootstrap加载器)加载的类和创建的对象

        jvm运行时方法区类静态变量(static)引用的对象

        jvm运行时方法去常量池引用的对象

        jvm当前运行线程中的虚拟机栈变量表引用的对象

        本地方法栈中(jni)引用的对象

 

c)        再谈引用

在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)四种,这四种引用强度依次逐渐减弱。强引用就是指在程序代码之中普遍存在的,类似“Object obj = new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。 软引用用来描述一些还有用,但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中并进行第二次回收。如果这次回收还是没有足够的内存,才会抛出内存溢出异常。在JDK 1.2之后,提供了SoftReference类来实现软引用。弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是希望能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。

d)        生存还是死亡

在根搜索算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行根搜索后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。

e)        回收方法区

很多人认为方法区(或者HotSpot虚拟机中的永久代)是没有垃圾收集的,Java虚拟机规范中确实说过可以不要求虚拟机在方法区实现垃圾收集,而且在方法区进行垃圾收集的“性价比”一般比较低:在堆中,尤其是在新生代中,常规应用进行一次垃圾收集一般可以回收70%~95%的空间,而永久代的垃圾收集效率远低于此。 永久代的垃圾收集主要回收两部分内容:废弃常量和无用的类。回收废弃常量与回收Java堆中的对象非常类似。以常量池中字面量的回收为例,假如一个字符串“abc”已经进入了常量池中,但是当前系统没有任何一个String对象是叫做“abc”的,换句话说是没有任何String对象引用常量池中的“abc”常量,也没有其他地方引用了这个字面量,如果在这时候发生内存回收,而且必要的话,这个“abc”常量就会被系统“请”出常量池。常量池中的其他类(接口)、方法、字段的符号引用也与此类似。判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面3个条件才能算是“无用的类”:该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例。加载该类的ClassLoader已经被回收。该类对应的java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

2.        垃圾收集算法

l  标记 -清除算法

首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作

l  复制算法

它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。只是这种算法的代价是将内存缩小为原来的一半,未免太高了一点。

现在的商业虚拟机都采用这种收集算法来回收新生代,IBM的专门研究表明,新生代中的对象98%是朝生夕死的,所以并不需要按照1∶1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor①。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor的空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存是会被“浪费”的。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)

l  标记-整理算法

l  分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收

 

新生代 GC(Minor GC):指发生在新生代的垃圾收集动作,因为 Java 对象大多都具备朝生夕灭的特性,所以 Minor GC 非常频繁,一般回收速度也比较快。

老年代 GC(MajorGC  / Full GC):指发生在老年代的 GC,出现了 Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在 ParallelScavenge 收集器的收集策略里就有直接进行 Major GC 的策略选择过程)。MajorGC 的速度一般会比 Minor GC 慢 1倍以上。

其中Monor GC如下图所示

 

虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden 出生并经过第一次 Minor GC 后仍然存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1。对象在 Survivor 区中每熬过一次 Minor GC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁)时,就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

3.        内存分配与回收策略

l  对象优先在Eden分配

l  大对象直接进入老年代

l  长期存活的对象将进入老年代

l  动态对象年龄判定

l  空间分配担保

总结内存分配与回收过程:

如果Eden空间占满了,会触发minor GC。Minor GC 后仍然存活的对象会被复制到S0中去。这样Eden就被清空可以分配给新的对象。

又触发了一次 Minor GC,S0和Eden中存活的对象被复制到S1中,并且S0和Eden被清空。在同一时刻,只有Eden和一个SurvivorSpace同时被操作。

当每次对象从Eden复制到SurvivorSpace或者从Survivor Space中的一个复制到另外一个,有一个计数器会自动增加值。默认情况下如果复制发生超过16次,JVM 会停止复制并把他们移到老年代中去。

如果一个对象不能在Eden中被创建,它会直接被创建在老年代中。 如果老年代的空间被占满会触发老年代的 GC,也被称为 Full GC。full GC是一个压缩处理过程,所以它比Minor GC要慢很多。

 

0 0