IP子网寻址,IP路由选择,IP首部拆解,IP标准化过程

来源:互联网 发布:短线炒股软件免费版 编辑:程序博客网 时间:2024/04/28 06:53

IP子网寻址

现在所有的主机都要求支持子网编址(RFC950[MogulandPostel1985])。不是把I
P地址看成由单纯的一个网络号和一个主机号组成,而是把主机号再分成一个子网号和一个主机号。
这样做的原因是因为A类和B类地址为主机号分配了太多的空间,可分别容纳的主机数为224-2和21
6-2。事实上,在一个网络中人们并不安排这么多的主机。由于全0或全1的主机号都是无效的,因此我们把总数减去2。
在InterNIC获得某类I
P网络号后,就由当地的系统管理员来进行分配,由他(或她)来决定是否建立子网,以及分配多少比特给子网号和主机号。例如,这里有一个B类网络地址(140.252),在剩下的16bit中,8bit用于子网号,8bit用于主机号,格式如图3-5所示。这样就允许有254个子网,每个子网可以有254台主机。

图3-5 B类地址的一种子网编址
许多管理员采用自然的划分方法,即把B类地址中留给主机的16 bit 中的前8 bit 作为子网地址,后8 b i t作为主机号。这样用点分十进制方法表示的I P地址就可以比较容易确定子网号。但是,并不要求A类或B类地址的子网划分都要以字节为划分界限。
大多数的子网例子都是B类地址。其实,子网还可用于C类地址,只是它可用的比特数较少而已。很少出现A类地址的子网例子是因为A类地址本身就很少(但是,大多数A类地址都是进行子网划分的)。
子网对外部路由器来说隐藏了内部网络组织(一个校园或公司内部)的细节。在我们的网络例子中,所有的I P地址都有一个B类网络号1 4 0 . 2 52。但是其中有超过3 0个子网,多于4 0 0 台主机分布在这些子网中。由一台路由器提供了I n t e r n e t的接入,如图3 - 6所示。
在这个图中,我们把大多数的路由器编号为Rn,n是子网号。我们给出了连接这些子网的路由器,同时还包括了扉页前图中的九个系统。在图中,以太网用粗线表示,点对点链路用虚线表示。我们没有画出不同子网中的所有主机。例如,在子网14 0 . 2 5 2 . 3上,就超过5 0台主机,而在子网1 4 0 . 2 5 2 . 1上则超过1 0 0台主机。
与3 0个C类地址相比,用一个包含3 0个子网的B类地址的好处是,它可以缩小I n t e r n e t路由表的规模。B类地址1 4 0 . 2 5 2被划分为若干子网的事实对于所有子网以外的I n t e r n e t路由器都是透明的。为了到达I P地址开始部分为1 4 0 . 2 5 2的主机,外部路由器只需要知道通往I P 地址1 4 0 . 2 5 2 . 1 0 4 . 1的路径。这就是说,对于网络1 4 0 . 2 5 2只需一个路由表目,而如果采用3 0个C类地址,则需要3 0个路由表目。因此,子网划分缩减了路由表的规模(在1 0 . 8小节中,我们将介绍一种新技术,即使用C类地址也可以缩减路由表的规模)。
子网对于子网内部的路由器是不透明的。如图3 - 6所示,一份来自I n t e r n e t的数据报到达g a t e w a y,它的目的地址是1 4 0 . 2 5 2 . 5 7 . 1。路由器g a t e w a y需要知道子网号是5 7,然后把它送到k p n o。同样,k p n o必须把数据报送到R 5 5,最后由R 5 5把它送到R 5 7。


图3-6 网络noao.edu(140.252)中的大多数子网安排

 

 

IP路由选择

从概念上说,IP路由选择是简单的,特别对于主机来说。如果目的主机与源主机直接相连(如点对点链路)或都在一个共享网络上(以太网或令牌环网),那么IP数据报就直接送到目的主机上。否则,主机把数据报发往一默认的路由器上,由路由器来转发该数据报。大多数的主机都是采用这种简单机制。
更一般的情况,即IP层既可以配置成路由器的功能,也可以配置成主机的功能。当今的大多数多用户系统,包括几乎所有的Unix系统,都可以配置成一个路由器。我们可以为它指定主机和路由器都可以使用的简单路由算法。本质上的区别在于主机从不把数据报从一个接口转发到另一个接口,而路由器则要转发数据报。内含路由器功能的主机应该从不转发数据报,除非它被设置成那样。
在一般的体制中,IP可以从TCP、UDP、ICMP和IGMP接收数据报(即在本地生成的数据报)并进行发送,或者从一个网络接口接收数据报(待转发的数据报)并进行发送。IP层在内存中有一个路由表。当收到一份数据报并进行发送时,它都要对该表搜索一次。当数据报来自某个网络接口时,IP首先检查目的IP地址是否为本机的IP地址之一或者IP广播地址。如果确实是这样,数据报就被送到由IP首部协议字段所指定的协议模块进行处理。如果数据报的
目的不是这些地址,那么(1)如果IP层被设置为路由器的功能,那么就对数据报进行转发(也就是说,像下面对待发出的数据报一样处理);否则(2)数据报被丢弃。路由表中的每一项都包含下面这些信息:
•目的IP地址。它既可以是一个完整的主机地址,也可以是一个网络地址,由该表目中的标志字段来指定(如下所述)。主机地址有一个非0的主机号,以指定某一特定的主机,而网络地址中的主机号为0,以指定网络中的所有主机(如以太网,令牌环网)。

•下一站(或下一跳)路由器(next-hoprouter)的IP地址,或者有直接连接的网络IP地址。下一站路由器是指一个在直接相连网络上的路由器,通过它可以转发数据报。下一站路由器不是最终的目的,但是它可以把传送给它的数据报转发到最终目的。

•标志。其中一个标志指明目的IP地址是网络地址还是主机地址,另一个标志指明下一站路由器是否为真正的下一站路由器,还是一个直接相连的接口

•为数据报的传输指定一个网络接口。

IP路由选择是逐跳地(hop-by-hop)进行的。从这个路由表信息可以看出,IP并不知道到达任何目的的完整路径(当然,除了那些与主机直接相连的目的)。所有的IP路由选择只为数据报传输提供下一站路由器的IP地址。它假定下一站路由器比发送数据报的主机更接近目的,而且下一站路由器与该主机是直接相连的。
IP路由选择主要完成以下这些功能:
1)搜索路由表,寻找能与目的IP地址完全匹配的表目(网络号和主机号都要匹配)。如果找到,则把报文发送给该表目指定的下一站路由器或直接连接的网络接口(取决于标志字段的值)。
2)搜索路由表,寻找能与目的网络号相匹配的表目。如果找到,则把报文发送给该表目指定的下一站路由器或直接连接的网络接口(取决于标志字段的值)。目的网络上的所有主机都可以通过这个表目来处置。例如,一个以太网上的所有主机都是通过这种表目进行寻径的。这种搜索网络的匹配方法必须考虑可能的子网掩码。关于这一点我们在下一节中进行讨论。
3)搜索路由表,寻找标为“默认(default)”的表目。如果找到,则把报文发送给该表目指定的下一站路由器。如果上面这些步骤都没有成功,那么该数据报就不能被传送。如果不能传送的数据报来自本机,那么一般会向生成数据报的应用程序返回一个“主机不可达”或“网络不可达”的错误。
完整主机地址匹配在网络号匹配之前执行。只有当它们都失败后才选择默认路由。默认路由,以及下一站路由器发送的ICMP间接报文(如果我们为数据报选择了错误的默认路由),是IP路由选择机制中功能强大的特性。我们在第9章对它们进行讨论。
为一个网络指定一个路由器,而不必为每个主机指定一个路由器,这是IP路由选择机制的另一个基本特性。这样做可以极大地缩小路由表的规模,比如Internet上的路由器有只有几千个表目,而不会是超过100万个表目。
举例
首先考虑一个简单的例子:我们的主机bsdi有一个IP数据报要发送给主机sun。双方都在同一个以太网上(参见扉页前图)。数据报的传输过程如图3-3所示。
当IP从某个上层收到这份数据报后,它搜索路由表,发现目的IP地址(140.252.13.33)在一个直接相连的网络上(以太网140.252.13.0)。于是,在表中找到匹配网络地址(我们将看到,由于以太网的子网掩码的存在,实际的网络地址是140.252.13.32,但是这并不影响这里所讨论的路由选择)。
数据报被送到以太网驱动程序,然后作为一个以太网数据帧被送到sun主机上
IP数据报中的目的地址是sun的IP地址(140.252.13.33),而在链路层首部中的目的地址是48bit的sun主机的以太网接口地址。这个48bit的以太网地址是用ARP协议获得的


图3-3 数据报从主机bsdi到sun的传送过程
现在来看另一个例子:主机b s d i有一份I P数据报要传到f t p . u u . n e t主机上,它的I P地址是1 9 2 . 4 8 . 9 6 . 9。经过的前三个路由器如图3 - 4所示。首先,主机b s d i搜索路由表,但是没有找到与主机地址或网络地址相匹配的表目,因此只能用默认的表目,把数据报传给下一站路由器,即主机s u n。当数据报从b s d i被传到s u n主机上以后,目的I P地址是最终的信宿机地址(1 9 2 . 4 8 . 9 6 . 9),但是链路层地址却是s u n主机的以太网接口地址。这与图3 - 3不同,在那里数据报中的目的I P地址和目的链路层地址都指的是相同的主机(s u n)。


图3-4 从b s d i 到f t p . u u . n e t (192.48.96.9)的初始路径
当s u n收到数据报后,它发现数据报的目的I P地址并不是本机的任一地址,而s u n已被设置成具有路由器的功能,因此它把数据报进行转发。经过搜索路由表,选用了默认表目。根据s u n的默认表目,它把数据报转发到下一站路由器n e t b,该路由器的地址是1 4 0 . 2 5 2 . 1 . 1 8 3。数据报是经过点对点S L I P链路被传送的,采用了图2 - 2所示的最小封装格式。这里,我们没有给出像以太网链路层数据帧那样的首部,因为在S L I P链路中没有那样的首部。
当n e t b收到数据报后,它执行与s u n主机相同的步骤:数据报的目的地址不是本机地址,而n e t b也被设置成具有路由器的功能,于是它也对该数据报进行转发。采用的也是默认路由表目,把数据报送到下一站路由器g a t e w a y(1 4 0 . 2 5 2 . 1 . 4)。位于以太网1 4 0 . 2 5 2 . 1上的主机n e t b用A R P获得对应于1 4 0 . 2 5 2 . 1 . 4的48 bit以太网地址。这个以太网地址就是链路层数据帧头上的目的地址。
路由器g a t e w a y也执行与前面两个路由器相同的步骤。它的默认路由表目所指定的下一站路由器I P地址是1 4 0 . 2 5 2 . 1 0 4 . 2(我们将在图8 - 4中证实,使用Tr a c e r o u t e 程序时,它就是g a t e w a y使用的下一站路由器)。
对于这个例子需要指出一些关键点: 1) 该例子中的所有主机和路由器都使用了默认路由。事实上,大多数主机和一些路由器可以用默认路由来处理任何目的,除非它在本地局域网上。
2) 数据报中的目的I P地址始终不发生任何变化(在8 . 5节中,我们将看到,只有使用源路由选项时,目的I P地址才有可能被修改,但这种情况很少出现)。所有的路由选择决策都是基于这个目的I P地址。
3) 每个链路层可能具有不同的数据帧首部,而且链路层的目的地址(如果有的话)始终指的是下一站的链路层地址。在例子中,两个以太网封装了含有下一站以太网地址的链路层首部,但是S L I P链路没有这样做。以太网地址一般通过A R P获得。

IP首部拆解

IP数据报的格式如图3-1所示。普通的IP首部长为20个字节,除非含有选项字段。

图3-1 IP数据报格式及首部中的各字段

分析图3-1中的首部。最高位在左边,记为0bit;最低位在右边,记为31bit。
4个字节的32bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作bigendian字节序。由于TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。以其他形式存储二进制整数的机器,如littleendian格式,则必须在传输数据之前把首部转换成网络字节序。
目前的协议版本号是4,因此IP有时也称作IPv4。3.10节将对一种新版的IP协议进行讨论。
首部长度指的是首部占32bit字的数目,包括任何选项。由于它是一个4比特字段,因此首部最长为60个字节。在第8章中,我们将看到这种限制使某些选项如路由记录选项在当今已没有什么用处。普通IP数据报(没有任何选择项)字段的值是5。
服务类型(TOS)字段包括一个3bit的优先权子字段(现在已被忽略),4bit的TOS子字段和1bit未用位但必须置0。4bit的TOS分别代表:最小时延、最大吞吐量、最高可靠性和最小费用。4bit中只能置其中1bit。如果所有4bit均为0,那么就意味着是一般服务。RFC1340[ReynoldsandPostel1992]描述了所有的标准应用如何设置这些服务类型。RFC1349[Almquist1992]对该RFC进行了修正,更为详细地描述了TOS的特性。
图3-2列出了对不同应用建议的TOS值。在最后一列中给出的是十六进制值,因为这就是在后面将要看到的tcpdump命令输出。

图3-2 服务类型字段推荐值

Te l n e t 和R l o g i n这两个交互应用要求最小的传输时延,因为人们主要用它们来传输少量的交互数据。另一方面,F T P文件传输则要求有最大的吞吐量。最高可靠性被指明给网络管理(SN M P)和路由选择协议。用户网络新闻(Usenet news, NNTP)是唯一要求最小费用的应用。
现在大多数的T C P / I P实现都不支持TO S 特性,但是自4.3BSD Reno以后的新版系统都对它进行了设置。另外,新的路由协议如O S P F和I S - I S都能根据这些字段的值进行路由决策。
在2 . 1 0节中,我们提到S L I P一般提供基于服务类型的排队方法,允许对交互通信数据在处理大块数据之前进行处理。由于大多数的实现都不使用TO S 字段,因此这种排队机制由S L I P自己来判断和处理,驱动程序先查看协议字段(确定是否是一个T C P 段),然后检查T C P信源和信宿的端口号,以判断是否是一个交互服务。一个驱动程序的注释这样认为,这种“令人厌恶的处理方法”是必需的,因为大多数实现都不允许应用程序设置TOS字段。
总长度字段是指整个I P数据报的长度,以字节为单位。利用首部长度字段和总长度字段,就可以知道I P数据报中数据内容的起始位置和长度。由于该字段长1 6比特,所以I P数据报最长可达6 5 5 3 5字节(回忆图2 - 5,超级通道的M T U为6 5 5 3 5 。它的意思其实不是一个真正的M T U—它使用了最长的I P数据报)。当数据报被分片时,该字段的值也随着变化。
尽管可以传送一个长达6 5 5 3 5字节的I P数据报,但是大多数的链路层都会对它进行分片。而且,主机也要求不能接收超过5 7 6字节的数据报。由于T C P把用户数据分成若干片,因此一般来说这个限制不会影响T C P。在后面的章节中将遇到大量使用U D P的应用(R I P,T F T P, B O O T P,D N S,以及S N M P),它们都限制用户数据报长度为5 1 2字节,小于5 7 6字节。但是,事实上现在大多数的实现(特别是那些支持网络文件系统N F S的实现)允许超过8 1 9 2字节的I P数据报。
总长度字段是I P首部中必要的内容,因为一些数据链路(如以太网)需要填充一些数据以达到最小长度。尽管以太网的最小帧长为4 6字节,但是I P数据可能会更短。如果没有总长度字段,那么I P层就不知道4 6字节中有多少是I P数据报的内容。
标识字段唯一地标识主机发送的每一份数据报。通常每发送一份报文它的值就会加1
RFC791 [Postel 1981a]认为标识字段应该由让IP发送数据报的上层来选择。假设有两个连续的I P数据报,其中一个是由T C P生成的,而另一个是由U D P生成的,那么它们可能具有相同的标识字段。尽管这也可以照常工作(由重组算法来处理),但是在大多数从伯克利派生出来的系统中,每发送一个I P数据报,I P层都要把一个内核变量的值加1,不管交给IP的数据来自哪一层。内核变量的初始值根据系统引导时的时间来设置。
T T L(t i m e - t o - l i v e)生存时间字段设置了数据报可以经过的最多路由器数。它指定了数据报的生存时间。T T L的初始值由源主机设置(通常为3 2或6 4),一旦经过一个处理它的路由器,它的值就减去1。当该字段的值为0时,数据报就被丢弃,并发送I C M P报文通知源主机。第8 章我们讨论Tr a c e r o u t e 程序时将再回来讨论该字段。
首部检验和字段是根据I P首部计算的检验和码。它不对首部后面的数据进行计算。I C M P、I G M P、U D P和T C P在它们各自的首部中均含有同时覆盖首部和数据检验和码。
为了计算一份数据报的I P检验和,首先把检验和字段置为0。然后,对首部中每个16 bit 进行二进制反码求和(整个首部看成是由一串16 bit的字组成),结果存在检验和字段中。当收到一份I P数据报后,同样对首部中每个16 bit 进行二进制反码的求和。由于接收方在计算过程中包含了发送方存在首部中的检验和,因此,如果首部在传输过程中没有发生任何差错,那么接收方计算的结果应该为全1。如果结果不是全1(即检验和错误),那么I P就丢弃收到的数据报。但是不生成差错报文,由上层去发现丢失的数据报并进行重传。
I C M P、I G M P、U D P和T C P都采用相同的检验和算法,尽管T C P和U D P除了本身的首部和数据外,在I P首部中还包含不同的字段。在RFC1071[Braden, Borman and Patridge 1988]中有关于如何计算I n t e r n e t检验和的实现技术。由于路由器经常只修改T TL字段(减1),因此当路由器转发一份报文时可以增加它的检验和,而不需要对I P 整个首部进行重新计算。R F C 1141Mallory and Kullberg 1990]为此给出了一个很有效的方法。
但是,标准的BSD实现在转发数据报时并不是采用这种增加的办法。每一份I P数据报都包含源I P地址和目的I P地址。我们在1 . 4节中说过,它们都是32 bit 的值。最后一个字段是任选项,是数据报中的一个可变长的可选信息。目前,这些任选项定义如下:
安全和处理限制(用于军事领域)

记录路径(让每个路由器都记下它的I P地址,)

时间戳(让每个路由器都记下它的I P地址和时间,)

宽松的源站选路(为数据报指定一系列必须经过的I P地址,)

严格的源站选路(与宽松的源站选路类似,但是要求只能经过指定的这些地址,不能经过其他的地址)。这些选项很少被使用,并非所有的主机和路由器都支持这些选项。选项字段一直都是以32 bit作为界限,在必要的时候插入值为0的填充字节。这样就保证I P首部始终是32 bit 的整数倍(这是首部长度字段所要求的)。

IP标准化过程

究竟是谁控制着TCP/IP协议族,又是谁在定义新的标准以及其他类似的事情?事实上,有四个小组在负责Internet技术。
1)Internet协会(ISOC,InternetSociety)是一个推动、支持和促进Internet不断增长和发展的专业组织,它把Internet作为全球研究通信的基础设施。
2)Internet体系结构委员会(IAB,InternetArchitectureBoard)是一个技术监督和协调的机构。它由国际上来自不同专业的15个志愿者组成,其职能是负责Internet标准的最后编辑和技术审核。IAB隶属于ISOC。
3)Internet工程专门小组(IETF,InternetEngineeringTaskForce)是一个面向近期标准的组织,它分为9个领域(应用、寻径和寻址、安全等等)。IETF开发成为Internet标准的规范。为帮助IETF主席,又成立了Internet工程指导小组(IESG,InternetEngineeringSteeringGroup)。
4)Internet研究专门小组(IRIF,InternetResearchTaskForce)主要对长远的项目进行研究。IRTF和IETF都隶属于IAB。文献[Crocker1993]提供了关于Internet内部标准化进程更为详细的信息,同时还介绍了它的早期历史。

原创粉丝点击