x264 - x264_me_search_ref

来源:互联网 发布:java软件编程培训费用 编辑:程序博客网 时间:2024/05/23 02:06





void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, int *p_halfpel_thresh )
{
    const int bw = x264_pixel_size[m->i_pixel].w;
    const int bh = x264_pixel_size[m->i_pixel].h;
    const int i_pixel = m->i_pixel;
    const int stride = m->i_stride[0];
    int i_me_range = h->param.analyse.i_me_range;
    int bmx, bmy, bcost = COST_MAX;
    int bpred_cost = COST_MAX;
    int omx, omy, pmx, pmy;
    // 指向待编码帧的Y平面
    pixel *p_fenc = m->p_fenc[0];
    // 指向参考帧的整像素平面 Y
    pixel *p_fref_w = m->p_fref_w;

    // 声明堆栈变量 pixel pix[16 * 16], 并且32字节对齐
    ALIGNED_ARRAY_N( pixel, pix,[16*16] );
    // 声明堆栈变量 int16_t mvc_temp[16][2], 并且8字节对齐
    ALIGNED_ARRAY_8( int16_t, mvc_temp,[16],[2] );
   
    // 声明堆栈变量 int costs[16], 并且16字节对齐
    ALIGNED_ARRAY_16( int, costs,[16] );
   
    // mv_limit_fpel 是一个 2x2 的 数组, 存放着整像素
    // 运动矢量搜索范围, min_x, min_y, max_x, max_y
    int mv_x_min = h->mb.mv_limit_fpel[0][0];
    int mv_y_min = h->mb.mv_limit_fpel[0][1];
    int mv_x_max = h->mb.mv_limit_fpel[1][0];
    int mv_y_max = h->mb.mv_limit_fpel[1][1];
   
    // pack16to32_mask2 主要是将两个整数分别放入高16位
    // 和低16位, 组合成一个32位的整数
/* Special version of pack to allow shortcuts in CHECK_MVRANGE */
#define pack16to32_mask2(mx,my) ((mx<<16)|(my&0x7FFF))
    uint32_t mv_min = pack16to32_mask2( -mv_x_min, -mv_y_min );
    uint32_t mv_max = pack16to32_mask2( mv_x_max, mv_y_max )|0x8000;
    uint32_t pmv, bpred_mv = 0;

// 这个宏很巧妙, 它将检查mx, my 是否超过了搜索范围
// 具体是, 如果mx, my有一个溢出, 其 or 运算的两边至少有一个的高位为1
// 从而将导致其or的结果与0x80004000进行与运算得到的结果不为0
#define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000))

    // a->p_cost_mv = h->cost_mv[a->i_qp] 见 x264_mb_analyse_load_costs
    // h->cost_mv 初始化, 见 x264_analyse_init_costs
    // m->p_cost_mv = a->p_cost_mv 见宏定义 LOAD_FUNC
    // 这个相减还真有点费解, 一个是地址, 一个是预测运动向量
    const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
    const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];

    /* Try extra predictors if provided.  If subme >= 3, check subpel predictors,
     * otherwise round them to fullpel. */
    if( h->mb.i_subpel_refine >= 3 )
    {
        // 需要进行 1/4 像素插值
        /* Calculate and check the MVP first */
       
        // SPEL 将整像素坐标转换为 1/4 像素坐标
        // 一个整数的低两位表示1/4像素坐标
        // SPEL 将实参左移两位, 即将原来的坐标乘以 4,
        // 比如:0 1 两个相邻的像素变成了0, 4, 其中空出来的1, 2, 3
        // 就对应着 1/4  1/2  3/4 像素位
        // 而 FPEL 将实参右移两位, 获得整像素位坐标
        // 即将原来放大了的整像素坐标还原
        // 从下面的程序来看, mvp保存的是1/4像素坐标
        int bpred_mx = x264_clip3( m->mvp[0], SPEL(mv_x_min), SPEL(mv_x_max) );
        int bpred_my = x264_clip3( m->mvp[1], SPEL(mv_y_min), SPEL(mv_y_max) );
        pmv = pack16to32_mask( bpred_mx, bpred_my );
        pmx = FPEL( bpred_mx );
        pmy = FPEL( bpred_my );

        // 见 COST_MV_HPEL, 对参考平面之参考宏块进行1/4 像素预插值
        // 并求编码宏块和参考宏块整像素的SAD(绝对差之和)
        // i_sum += abs( pix1[x] - pix2[x] );
       
        COST_MV_HPEL( bpred_mx, bpred_my, bpred_cost );
       
        // 将得到的预测运动向量的代价赋值给pmv_cost
        int pmv_cost = bpred_cost;

        if( i_mvc > 0 )
        {
            // 下面的英文注释已经表达的很清楚了,这翻译一下
            //  裁减候选的运动向量,除掉那些 0 向量 或 等于 pmv (mvp) 的向量
            //  并将裁减结果放在mvc_temp[2]及之后处
            /* Clip MV candidates and eliminate those equal to zero and pmv. */
            int valid_mvcs = x264_predictor_clip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
            // 对其他候选向量进行处理
            if( valid_mvcs > 0 )
            {
                int i = 1, cost;
                /* We stuff pmv here to branchlessly pick between pmv and the various
                 * MV candidates. [0] gets skipped in order to maintain alignment for
                 * x264_predictor_clip. */
                
                // mvc_temp[0] 空着, 为了维护对齐
                // mvc_temp[1] 存放 pmv
               
                M32( mvc_temp[1] ) = pmv;
                bpred_cost <<= 4;
                do
                {
                    int mx = mvc_temp[i+1][0];
                    int my = mvc_temp[i+1][1];
                    COST_MV_HPEL( mx, my, cost );
                    COPY1_IF_LT( bpred_cost, (cost << 4) + i );
                } while( ++i <= valid_mvcs );
               
                // 确定最终的预测运动向量
                bpred_mx = mvc_temp[(bpred_cost&15)+1][0];
                bpred_my = mvc_temp[(bpred_cost&15)+1][1];
                bpred_cost >>= 4;
            }
        }

        /* Round the best predictor back to fullpel and get the cost, since this is where
         * we'll be starting the fullpel motion search. */
        // 从1/4像素坐标得到整像素坐标,因为我们将开始整像素运动搜索
        bmx = FPEL( bpred_mx );
        bmy = FPEL( bpred_my );
        bpred_mv = pack16to32_mask(bpred_mx, bpred_my);
        // 预测运动向量是 1/4 像素坐标,即是1/4像素预测(包括1/4, 2/4, 3/4)
        if( bpred_mv&0x00030003 ) /* Only test if the tested predictor is actually subpel... */
            COST_MV( bmx, bmy );   // call x264_pixel_sad_16x16 计算预测运动向量代价
        else                          /* Otherwise just copy the cost (we already know it) */
            bcost = bpred_cost;

        /* Test the zero vector if it hasn't been tested yet. */
        if( pmv )  // 如果 pmv 不是 0 向量
        { 
            // 如果 bmx, bmy也不是0向量        
            // call x264_pixel_sad_16x16 以0向量为预测运动向量计算SAD,
            // 如果代价更小,就替换代价和相应的预测运动向量
            if( bmx|bmy ) COST_MV( 0, 0 );
        }
        /* If a subpel mv candidate was better than the zero vector, the previous
         * fullpel check won't have gotten it even if the pmv was zero. So handle
         * that possibility here. */
        else
        {
            COPY3_IF_LT( bcost, pmv_cost, bmx, 0, bmy, 0 );
        }
    }
    else
    {
        // 计算和检查整像素 MVP
        /* Calculate and check the fullpel MVP first */
        // mvp保存的是 1/4 像素坐标, 先转换为整像素坐标
        bmx = pmx = x264_clip3( FPEL(m->mvp[0]), mv_x_min, mv_x_max );
        bmy = pmy = x264_clip3( FPEL(m->mvp[1]), mv_y_min, mv_y_max );
        // 对整像素坐标打包
        pmv = pack16to32_mask( bmx, bmy );

        /* Because we are rounding the predicted motion vector to fullpel, there will be
         * an extra MV cost in 15 out of 16 cases.  However, when the predicted MV is
         * chosen as the best predictor, it is often the case that the subpel search will
         * result in a vector at or next to the predicted motion vector.  Therefore, we omit
         * the cost of the MV from the rounded MVP to avoid unfairly biasing against use of
         * the predicted motion vector.
         *
         * Disclaimer: this is a post-hoc rationalization for why this hack works. */
       
        // call x264_pixel_sad_16x16 计算 SAD, 以预测运动向量(bmy, bmx)
        bcost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[bmy*stride+bmx], stride );

        if( i_mvc > 0 )
        {
            /* Like in subme>=3, except we also round the candidates to fullpel. */
            int valid_mvcs = x264_predictor_roundclip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
            if( valid_mvcs > 0 )
            {
                int i = 1, cost;
                M32( mvc_temp[1] ) = pmv;
                bcost <<= 4;
                do
                {
                    int mx = mvc_temp[i+1][0];
                    int my = mvc_temp[i+1][1];
                    cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[my*stride+mx], stride ) + BITS_MVD( mx, my );
                    COPY1_IF_LT( bcost, (cost << 4) + i );
                } while( ++i <= valid_mvcs );
                bmx = mvc_temp[(bcost&15)+1][0];
                bmy = mvc_temp[(bcost&15)+1][1];
                bcost >>= 4;
            }
        }

        /* Same as above, except the condition is simpler. */
        // call x264_pixel_sad_16x16 以0向量为预测运动向量计算SAD,
        // 如果代价更小,就替换代价和相应的预测运动向量
        if( pmv ) 
            COST_MV( 0, 0 );
    }

    // 根据设定的运动估计方法, 来执行搜索
    switch( h->mb.i_me_method )
    {
        case X264_ME_DIA:
        {
            /* diamond search, radius 1 */
            bcost <<= 4;
            int i = i_me_range;
            do
            {
                COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
                COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
                COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
                COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
                COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
                if( !(bcost&15) )
                    break;
                bmx -= (bcost<<28)>>30;
                bmy -= (bcost<<30)>>30;
                bcost &= ~15;
            } while( --i && CHECK_MVRANGE(bmx, bmy) );
            bcost >>= 4;
            break;
        }

        case X264_ME_HEX:
        {
    me_hex2:
            /* hexagon search, radius 2 */
    #if 0
            for( int i = 0; i < i_me_range/2; i++ )
            {
                omx = bmx; omy = bmy;
                COST_MV( omx-2, omy   );
                COST_MV( omx-1, omy+2 );
                COST_MV( omx+1, omy+2 );
                COST_MV( omx+2, omy   );
                COST_MV( omx+1, omy-2 );
                COST_MV( omx-1, omy-2 );
                if( bmx == omx && bmy == omy )
                    break;
                if( !CHECK_MVRANGE(bmx, bmy) )
                    break;
            }
    #else
            /* equivalent to the above, but eliminates duplicate candidates */

            /* hexagon */
            // call x264_pixel_sad_x3_16x16 分别计算三个点
            // 分别为预测运动向量时的代价
            COST_MV_X3_DIR( -2,0, -1, 2,  1, 2, costs   );
            // 计算另三个点为预测运动向量时的代价
            COST_MV_X3_DIR(  2,0,  1,-2, -1,-2, costs+4 ); /* +4 for 16-byte alignment */
            bcost <<= 3;
            // 如果有代价更小的,替换原来的代价和相应的预测运动向量
            COPY1_IF_LT( bcost, (costs[0]<<3)+2 );
            COPY1_IF_LT( bcost, (costs[1]<<3)+3 );
            COPY1_IF_LT( bcost, (costs[2]<<3)+4 );
            COPY1_IF_LT( bcost, (costs[4]<<3)+5 );
            COPY1_IF_LT( bcost, (costs[5]<<3)+6 );
            COPY1_IF_LT( bcost, (costs[6]<<3)+7 );

            if( bcost&7 )
            {
                // bcost & 7 为真, 说明存在更小的预测运动向量
                // 获取是哪个预测点
                int dir = (bcost&7)-2;
                // 将bmx, bmy 沿这个方向前进(移动)
                bmx += hex2[dir+1][0];
                bmy += hex2[dir+1][1];

                /* half hexagon, not overlapping the previous iteration */
                // 判断是否越界(超过搜索范围)
                for( int i = (i_me_range>>1) - 1; i > 0 && CHECK_MVRANGE(bmx, bmy); i-- )
                {
                    // 仅仅对三个点进行预测求SAD代价,
                    // 因为另外的三个点已经预测求SAD代价过了
                    COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1],
                                    hex2[dir+1][0], hex2[dir+1][1],
                                    hex2[dir+2][0], hex2[dir+2][1],
                                    costs );
                    bcost &= ~7;
                    COPY1_IF_LT( bcost, (costs[0]<<3)+1 );
                    COPY1_IF_LT( bcost, (costs[1]<<3)+2 );
                    COPY1_IF_LT( bcost, (costs[2]<<3)+3 );
                    if( !(bcost&7) )
                        break;
                    dir += (bcost&7)-2;
                    dir = mod6m1[dir+1];
                    bmx += hex2[dir+1][0];
                    bmy += hex2[dir+1][1];
                }
            }
            bcost >>= 3;
    #endif
            // 菱(方)形搜索,进一步求精
            /* square refine */
            bcost <<= 4;
            COST_MV_X4_DIR(  0,-1,  0,1, -1,0, 1,0, costs );
            COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
            COPY1_IF_LT( bcost, (costs[1]<<4)+2 );
            COPY1_IF_LT( bcost, (costs[2]<<4)+3 );
            COPY1_IF_LT( bcost, (costs[3]<<4)+4 );
            COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs );
            COPY1_IF_LT( bcost, (costs[0]<<4)+5 );
            COPY1_IF_LT( bcost, (costs[1]<<4)+6 );
            COPY1_IF_LT( bcost, (costs[2]<<4)+7 );
            COPY1_IF_LT( bcost, (costs[3]<<4)+8 );
            bmx += square1[bcost&15][0];
            bmy += square1[bcost&15][1];
            bcost >>= 4;
            break;
        }

        case X264_ME_UMH:
        {
            /* Uneven-cross Multi-Hexagon-grid Search
             * as in JM, except with different early termination */

            static const uint8_t x264_pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 };

            int ucost1, ucost2;
            int cross_start = 1;

            /* refine predictors */
            ucost1 = bcost;
           
            // 以pmv为中心,取构成菱形的四个点进行预测求SAD,
            // 如果有更小的,将替换bcost和bmx, bmy
            DIA1_ITER( pmx, pmy );
            if( pmx | pmy ) // 以0向量为中心,取构成菱形的四个点预测
                DIA1_ITER( 0, 0 );

            // 为什么???
            if( i_pixel == PIXEL_4x4 )
                goto me_hex2;

            ucost2 = bcost;
            // 如果bmx, bmy不是0向量, 且不等于pmv向量
            // 搜索以bmx, bmy为中心构成菱形的四个点进行预测,
            // 如果有更小的代价,则替换bcost和bmx, bmy
            if( (bmx | bmy) && ((bmx-pmx) | (bmy-pmy)) )
                DIA1_ITER( bmx, bmy );
            // 如果上面的预测,没有预测到更佳的预测运动向量
            // 则将cross_start赋值为3
            if( bcost == ucost2 )
                cross_start = 3;
               
            // 保存当前的bmx, bmy
            omx = bmx; omy = bmy;

            /* early termination */
#define SAD_THRESH(v) ( bcost < ( v >> x264_pixel_size_shift[i_pixel] ) )
            if( bcost == ucost2 && SAD_THRESH(2000) )
            {
                // 如果bcost == ucost2, 并且bcost小于某个阈值
                // 以omx, omy为中心,对其周围的四个点进行预测
                // 如果有更小的代价, 则替换bcost和bmx, bmy
                COST_MV_X4( 0,-2, -1,-1, 1,-1, -2,0 );
                // 以omx, omy为中心, 对其周围的另外四个点进行预测
                // 如果有更小的代价,则替换bcost和bmx, bmy
                COST_MV_X4( 2, 0, -1, 1, 1, 1,  0,2 );
                // 如果bcost == ucost1,说明前面的预测都没有发现
                // 代价更小的预测点,因此提前终止预测
                if( bcost == ucost1 && SAD_THRESH(500) )
                    break;
                // 如果bcost == ucost2,则继续预测
                if( bcost == ucost2 )
                {
                    // 设定预测范围
                    int range = (i_me_range>>1) | 1;
                    // x,y方向交叉预测omx, omy附近的点, 见CROSS
                    // 如果有更小的代价,则替换bcost和bmx, bmy
                    CROSS( 3, range, range );
                    // 预测omx, omy为中心的下述四个点
                    // 如果有更小的代价,则替换bcost和bmx, bmy
                    COST_MV_X4( -1,-2, 1,-2, -2,-1, 2,-1 );
                    // 预测omx, omy为中心的下述另外四个点
                    // 如果有更小的代价,则替换bcost和bmx, bmy
                    COST_MV_X4( -2, 1, 2, 1, -1, 2, 1, 2 );
                    // 如果依然没有搜索到更佳的预测运动向量
                    // 则终止搜索
                    if( bcost == ucost2 )
                        break;
                    // 如果有更佳的预测运动向量被搜索到,
                    // 则设定新的cross_start
                    cross_start = range + 2;
                }
            }

            // 自适应预测搜索
            /* adaptive search range */
            if( i_mvc )
            {
                /* range multipliers based on casual inspection of some statistics of
                 * average distance between current predictor and final mv found by ESA.
                 * these have not been tuned much by actual encoding. */
                static const uint8_t range_mul[4][4] =
                {
                    { 3, 3, 4, 4 },
                    { 3, 4, 4, 4 },
                    { 4, 4, 4, 5 },
                    { 4, 4, 5, 6 },
                };
                int mvd;
                int sad_ctx, mvd_ctx;
                int denom = 1;

                if( i_mvc == 1 )
                {
                    if( i_pixel == PIXEL_16x16 )
                        /* mvc is probably the same as mvp, so the difference isn't meaningful.
                         * but prediction usually isn't too bad, so just use medium range */
                        mvd = 25;
                    else
                        mvd = abs( m->mvp[0] - mvc[0][0] )
                            + abs( m->mvp[1] - mvc[0][1] );
                }
                else
                {
                    /* calculate the degree of agreement between predictors. */
                    /* in 16x16, mvc includes all the neighbors used to make mvp,
                     * so don't count mvp separately. */
                    // 获得mvc的相邻格数
                    denom = i_mvc - 1;
                    // 初始化向量差的绝对值和
                    mvd = 0;
                    if( i_pixel != PIXEL_16x16 )
                    {
                        // 如果i_pixel不等于 0
                        // 计算mvp,与mvc[0]两个向量的x,y方向
                        // 的差的绝对值和
                        mvd = abs( m->mvp[0] - mvc[0][0] )
                            + abs( m->mvp[1] - mvc[0][1] );
                        // 增加格数
                        denom++;
                    }
                    // 迭代计算mvc数组相邻两个mvc[i], mvc[i+1]之间的
                    // 的向量差的绝对值之和
                    mvd += x264_predictor_difference( mvc, i_mvc );
                }
                // 根据bcost与阈值之间的关系, 设定sad_ctx
                sad_ctx = SAD_THRESH(1000) ? 0
                        : SAD_THRESH(2000) ? 1
                        : SAD_THRESH(4000) ? 2 : 3;
                // 根据上面计算的mvd及denom, 设定mvc_ctx
                mvd_ctx = mvd < 10*denom ? 0
                        : mvd < 20*denom ? 1
                        : mvd < 40*denom ? 2 : 3;
                // 获取相应的搜索范围放大器, 更新搜索范围
                i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] >> 2;
            }

            /* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
             * we are still centered on the same place as the DIA2. is this desirable? */
            // 在x, y方向交叉搜索, x方向的搜索范围i_me_range,
            // y方向搜索范围i_me_range / 2
            // 如果发现更佳的运动向量, 则替换bcost和bmx, bmy
            CROSS( cross_start, i_me_range, i_me_range>>1 );
            // 预测以omx, omy为中心的下述四个点
            // 如果发现更佳的运动向量,则替换bcost和bmx, bmy
            COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 );

            /* hexagon grid */
            // 保存新的候选的最佳预测运动向量
            omx = bmx; omy = bmy;
           
            // 让p_cost_omx, p_cost_omvy
            // 指向p_cost_mvx, p_cost_mvy的某个偏移
        // a->p_cost_mv = h->cost_mv[a->i_qp] 见 x264_mb_analyse_load_costs
        // h->cost_mv 初始化, 见 x264_analyse_init_costs
        // m->p_cost_mv = a->p_cost_mv 见宏定义 LOAD_FUNC
   
            const uint16_t *p_cost_omvx = p_cost_mvx + omx*4;
            const uint16_t *p_cost_omvy = p_cost_mvy + omy*4;
            int i = 1;
            do
            {
                static const int8_t hex4[16][2] = {
                    { 0,-4}, { 0, 4}, {-2,-3}, { 2,-3},
                    {-4,-2}, { 4,-2}, {-4,-1}, { 4,-1},
                    {-4, 0}, { 4, 0}, {-4, 1}, { 4, 1},
                    {-4, 2}, { 4, 2}, {-2, 3}, { 2, 3},
                };
                // 如果 4*i 大于这四个值的最小值
                if( 4*i > X264_MIN4( mv_x_max-omx, omx-mv_x_min,
                                     mv_y_max-omy, omy-mv_y_min ) )
                {
                    // 迭代搜索 16 次
                    for( int j = 0; j < 16; j++ )
                    {
                        // 将搜索点偏移某个向量
                        int mx = omx + hex4[j][0]*i;
                        int my = omy + hex4[j][1]*i;
                        // 新的预测运动向量是否越界
                        // 如果没有越界,则预测其代价
                        // 如果代价更小,则替换bcost和bmx, bmy
                        if( CHECK_MVRANGE(mx, my) )
                            COST_MV( mx, my );
                    }
                }
                else
                {
                    int dir = 0;
                    // 根据omx, omy, i 调整预测中心
                    pixel *pix_base = p_fref_w + omx + (omy-4*i)*stride;
                    int dy = i*stride;
// h->pixf.fpelcmp_x4[0] = x264_pixel_sad_x4_16x16
// 这个宏定义有点特别, 这种语法pix_base x0*i+(y0-2*k+4)*dy
// 能表示pix_base的偏移 x0*i+(y0-2*k+4)*dy
// 我自己写类似的语法,根本无法编译
// 不知道 x264 如何做到
#define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\
                    h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
                            pix_base x0*i+(y0-2*k+4)*dy,\
                            pix_base x1*i+(y1-2*k+4)*dy,\
                            pix_base x2*i+(y2-2*k+4)*dy,\
                            pix_base x3*i+(y3-2*k+4)*dy,\
                            stride, costs+4*k );\
                    pix_base += 2*dy;
#define ADD_MVCOST(k,x,y) costs[k] += p_cost_omvx[x*4*i] + p_cost_omvy[y*4*i]
#define MIN_MV(k,x,y)     COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
                    // 根据新的中心点, 预测其四个偏移点
                    // pix_base x0*i+(y0-2*k+4)*dy  等
                    // 其中 dy = i * stride; // stride在我的调试中=1344
                    // 并分别将预测代价保存在costs数组
                    SADS( 0, +0,-4, +0,+4, -2,-3, +2,-3 );
                    SADS( 1, -4,-2, +4,-2, -4,-1, +4,-1 );
                    SADS( 2, -4,+0, +4,+0, -4,+1, +4,+1 );
                    SADS( 3, -4,+2, +4,+2, -2,+3, +2,+3 );
                    // 将每个点预测代价加上该点的预设的相关代价
                    ADD_MVCOST(  0, 0,-4 );
                    ADD_MVCOST(  1, 0, 4 );
                    ADD_MVCOST(  2,-2,-3 );
                    ADD_MVCOST(  3, 2,-3 );
                    ADD_MVCOST(  4,-4,-2 );
                    ADD_MVCOST(  5, 4,-2 );
                    ADD_MVCOST(  6,-4,-1 );
                    ADD_MVCOST(  7, 4,-1 );
                    ADD_MVCOST(  8,-4, 0 );
                    ADD_MVCOST(  9, 4, 0 );
                    ADD_MVCOST( 10,-4, 1 );
                    ADD_MVCOST( 11, 4, 1 );
                    ADD_MVCOST( 12,-4, 2 );
                    ADD_MVCOST( 13, 4, 2 );
                    ADD_MVCOST( 14,-2, 3 );
                    ADD_MVCOST( 15, 2, 3 );
                    // #define MIN_MV(k,x,y)    
                    // COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
                    // 判断该点的预测代价是否更优
                    // 如果更佳,则替换bcost, 并将x, y进行复合
                    // 赋值给dir
                    MIN_MV(  0, 0,-4 );
                    MIN_MV(  1, 0, 4 );
                    MIN_MV(  2,-2,-3 );
                    MIN_MV(  3, 2,-3 );
                    MIN_MV(  4,-4,-2 );
                    MIN_MV(  5, 4,-2 );
                    MIN_MV(  6,-4,-1 );
                    MIN_MV(  7, 4,-1 );
                    MIN_MV(  8,-4, 0 );
                    MIN_MV(  9, 4, 0 );
                    MIN_MV( 10,-4, 1 );
                    MIN_MV( 11, 4, 1 );
                    MIN_MV( 12,-4, 2 );
                    MIN_MV( 13, 4, 2 );
                    MIN_MV( 14,-2, 3 );
                    MIN_MV( 15, 2, 3 );
#undef SADS
#undef ADD_MVCOST
#undef MIN_MV
                    // 如果dir不为0, 则说明前面的预测
                    // 获得了更佳的预测运动向量
                    if(dir)
                    {
                        // 更新最佳预测运动向量
                        // 为什么乘以i,暂时不是很清楚
                        bmx = omx + i*(dir>>4);
                        bmy = omy + i*((dir<<28)>>28);
                    }
                }
            } while( ++i <= i_me_range>>2 ); // i 是否越界
           
            // 如果最佳预测运动向量没有越界,进行hex2预测
            // 为什么没有越界,继续进行hex预测
            // 而越界后终止
            if( bmy <= mv_y_max && bmy >= mv_y_min && bmx <= mv_x_max && bmx >= mv_x_min )
                goto me_hex2;
               
            // 终止预测
            break;
        }

        case X264_ME_ESA:
        case X264_ME_TESA:
        {
            // 限制 min_x, min_y, max_x, max_y 的范围
            const int min_x = X264_MAX( bmx - i_me_range, mv_x_min );
            const int min_y = X264_MAX( bmy - i_me_range, mv_y_min );
            const int max_x = X264_MIN( bmx + i_me_range, mv_x_max );
            const int max_y = X264_MIN( bmy + i_me_range, mv_y_max );
           
            // 获取 x 方向宽度,
            // 除以4, 是否min_x, max_x 是 1/4像素坐标
            // 转换为整像素坐标 ???
            /* SEA is fastest in multiples of 4 */
            const int width = (max_x - min_x + 3) & ~3;
#if 0
            /* plain old exhaustive search */
            for( int my = min_y; my <= max_y; my++ )
                for( int mx = min_x; mx < min_x + width; mx++ )
                    COST_MV( mx, my );
#else
            /* successive elimination by comparing DC before a full SAD,
             * because sum(abs(diff)) >= abs(diff(sum)). */
            uint16_t *sums_base = m->integral;
            ALIGNED_16( static pixel zero[8*FENC_STRIDE] ) = {0};
            // 声明一个整数数组 int enc_dc[4]
            ALIGNED_ARRAY_16( int, enc_dc,[4] );
            // PIXEL_8X8 = 3, PIXEL_4X4 = 6
            // 因此 sad_size 要么=3, 要么=6
            // sad_size在这是x264_pixel_size的索引号
            // enum
      // {
      //     PIXEL_16x16 = 0,
      //     PIXEL_16x8  = 1,
      //     PIXEL_8x16  = 2,
      //     PIXEL_8x8   = 3,
      //     PIXEL_8x4   = 4,
      //     PIXEL_4x8   = 5,
      //     PIXEL_4x4   = 6,
       
      //     /* Subsampled chroma only */
      //     PIXEL_4x16  = 7,  /* 4:2:2 */
      //     PIXEL_4x2   = 8,
      //     PIXEL_2x8   = 9,  /* 4:2:2 */
      //     PIXEL_2x4   = 10,
      //     PIXEL_2x2   = 11,
      // };
       
      // static const struct { uint8_t w, h; } x264_pixel_size[12] =
      // {
      //     { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 },
      //     {  4, 16 }, {  4, 2 }, { 2,  8 }, { 2, 4 }, { 2, 2 },
      // };
            // x264_pixel_size表示的是像素的wxh
           
            int sad_size = i_pixel <= PIXEL_8x8 ? PIXEL_8x8 : PIXEL_4x4;
            int delta = x264_pixel_size[sad_size].w;
            int16_t *xs = h->scratch_buffer;
            int xn;
           
            // 在 x264_analyse_init_costs 函数中
       //  if( h->param.analyse.i_me_method >= X264_ME_ESA && !h->cost_mv_fpel[qp][0] )
       //  {
       //      for( int j = 0; j < 4; j++ )
       //      {
       //          CHECKED_MALLOC( h->cost_mv_fpel[qp][j], (4*2048 + 1) * sizeof(uint16_t) );
       //          h->cost_mv_fpel[qp][j] += 2*2048;
       //          for( int i = -2*2048; i < 2*2048; i++ )
       //              h->cost_mv_fpel[qp][j][i] = h->cost_mv[qp][i*4+j];
       //      }
       //  }
       // 由上面的代码可知, h->cost_mv_fpel数组
       // 在x264_analyse_init_costs被初始化
       // 因此 cost_fpel_mvx指向某个指针
       // 从字面上看, 这块内存保存着整像素预设的预测向量???
            uint16_t *cost_fpel_mvx = h->cost_mv_fpel[h->mb.i_qp][-m->mvp[0]&3] + (-m->mvp[0]>>2);

            // 在我的调试中 sad_size = 3, delta = 8
            // h->pixf.sad_x4[3] = x264_pixel_sad_x4_8x8
            // SAD_X( 8x8 )将分别调x264_pixel_sad_8x8三次
            // 如果p_fenc指向的宏块假定为索引0
            // 那么p_fenc表示宏块0
            // p_fenc+delta表示其右宏块1
            // p_fenc + delta*FENC_STRIDE表示其底宏块2
            // p_fenc + delta + delta * FENC_STRIDE表示其底右宏块
            // 也就是p_fenc将与其右, 底, 底右宏块
            // 分别x26_pixel_sad_8x8求SAD
            // 将预测代价保存在enc_dc数组中
            h->pixf.sad_x4[sad_size]( zero, p_fenc, p_fenc+delta,
                p_fenc+delta*FENC_STRIDE, p_fenc+delta+delta*FENC_STRIDE,
                FENC_STRIDE, enc_dc );
               
            // PADV = 32, 在我的调试中 stride = 1344
            // h->fenc->i_lines[0] + PADV*2 表示有多少行(包括padding lines)
            if( delta == 4 )
                sums_base += stride * (h->fenc->i_lines[0] + PADV*2);
            // 在我的调试中, i_pixel = 0(PIXEL_16x16)
            // 因此 delta = 8 * 1344 = 10752
            if( i_pixel == PIXEL_16x16 || i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
                delta *= stride;
            if( i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
                enc_dc[1] = enc_dc[2];

            if( h->mb.i_me_method == X264_ME_TESA )
            {
                // ADS threshold, then SAD threshold, then keep the best few SADs, then SATD
                mvsad_t *mvsads = (mvsad_t *)(xs + ((width+31)&~31) + 4);
                int nmvsad = 0, limit;
                // 根据 i_me_range 的值 设定 sad_thresh = 10, 11, or 12
                int sad_thresh = i_me_range <= 16 ? 10 : i_me_range <= 24 ? 11 : 12;
               
                // h->pixf.sad[0] = x264_pixel_sad_16x16
                // 计算p_fenc 与 参考Y平面在预测向量bmx, bmy为原点
                // 的sad计算, 得到的SAD赋值给bsad
                int bsad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+bmy*stride+bmx, stride )
                         + BITS_MVD( bmx, bmy );
                for( int my = min_y; my <= max_y; my++ )
                {
                    int i;
                    // 初始化y方向预测代价
                    int ycost = p_cost_mvy[my<<2];
                    // 如果bsad小于这个初始化代价值,则进行下一个迭代
                    if( bsad <= ycost )
                        continue;
                       
                    // 得到剩余代价
                    bsad -= ycost;
                    // h->pixf.ads[0] = x264_pixel_ads4
          // static int x264_pixel_ads4( int enc_dc[4], uint16_t *sums, int delta,
          //            uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
          // {
          //    int nmv = 0;
          //    for( int i = 0; i < width; i++, sums++ )
          //    {
          //        int ads = abs( enc_dc[0] - sums[0] )
          //                + abs( enc_dc[1] - sums[8] )
          //                + abs( enc_dc[2] - sums[delta] )
          //                + abs( enc_dc[3] - sums[delta+8] )
          //                + cost_mvx[i];
          //        if( ads < thresh )
          //            mvs[nmv++] = i;
          //    }
          //    return nmv;
          // }
                   
                    xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
                                               cost_fpel_mvx+min_x, xs, width, bsad * 17 >> 4 );
                   
                    for( i = 0; i < xn-2; i += 3 )
                    {
                        // 指向min_X, my为原点的像素区
                        pixel *ref = p_fref_w+min_x+my*stride;
                        // 声明 int sads[4]
                        ALIGNED_ARRAY_16( int, sads,[4] ); /* padded to [4] for asm */
                       
                        // h->pixf.sad_x3[0] = x264_pixel_sad_x3_16x16
                        // 求p_fenc分别于ref + xs[i], ref + xs[i+1], ref + xs[i+2]
                        // 三个像素点为原点的预测代价,并保存在sads数组
                        h->pixf.sad_x3[i_pixel]( p_fenc, ref+xs[i], ref+xs[i+1], ref+xs[i+2], stride, sads );
                        for( int j = 0; j < 3; j++ )
                        {
                            // 迭代求sad
                            int sad = sads[j] + cost_fpel_mvx[xs[i+j]];
                            // sad 满足某个条件
                            if( sad < bsad*sad_thresh>>3 )
                            {
                                // 如果sad < bsad, => bsad = sad
                                COPY1_IF_LT( bsad, sad );
                                // 保存补偿后的sad
                                mvsads[nmvsad].sad = sad + ycost;
                                // 保存候选的预测运动向量
                                mvsads[nmvsad].mv[0] = min_x+xs[i+j];
                                mvsads[nmvsad].mv[1] = my;
                                nmvsad++;
                            }
                        }
                    }
                    for( ; i < xn; i++ )
                    {
                        // 获取新的mx, 作为x方向的原点
                        int mx = min_x+xs[i];
                        // 在p_fenc和以mx, my为原点参考Y平面之间
                        // 求sad
                        int sad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+mx+my*stride, stride )
                                + cost_fpel_mvx[xs[i]];
                        if( sad < bsad*sad_thresh>>3 )
                        {
                            // 执行类似上面的操作
                            COPY1_IF_LT( bsad, sad );
                            mvsads[nmvsad].sad = sad + ycost;
                            mvsads[nmvsad].mv[0] = mx;
                            mvsads[nmvsad].mv[1] = my;
                            nmvsad++;
                        }
                    }
                    // 补偿 bsad
                    bsad += ycost;
                }

                // 设定新的限制和阈值
                limit = i_me_range >> 1;
                sad_thresh = bsad*sad_thresh>>3;
                while( nmvsad > limit*2 && sad_thresh > bsad )
                {
                    int i;
                    // halve the range if the domain is too large... eh, close enough
                    // 更新阈值
                    sad_thresh = (sad_thresh + bsad) >> 1;
                    // 迭代直到 mvsads[i].sad > sad_thresh
                    for( i = 0; i < nmvsad && mvsads[i].sad <= sad_thresh; i++ );
                    // 从i开始, 拷贝后面的sad, mv到[i]
                    // 这段代码的主要作用是将小于sad_thresh的
                    // sad 和 mv 保存在 mvsads[0], [1], ..., [i - 1]中
                    for( int j = i; j < nmvsad; j++ )
                    {
                        uint32_t sad;
                        if( WORD_SIZE == 8 && sizeof(mvsad_t) == 8 )
                        {
                            uint64_t mvsad = M64( &mvsads[i] ) = M64( &mvsads[j] );
#if WORDS_BIGENDIAN
                            mvsad >>= 32;
#endif
                            sad = mvsad;
                        }
                        else
                        {
                            // 将数组后面的sad, mv拷贝给[i]
                            sad = mvsads[j].sad;
                            CP32( mvsads[i].mv, mvsads[j].mv );
                            mvsads[i].sad = sad;
                        }
                        // 第一遍迭代, i 保持不变,
                        // 因为j = i, 这时 mvsads[i].sad > sad_thresh
                        // 因为sad是uint32_t型,因此右边的取值只可能是0或1
                        i += (sad - (sad_thresh+1)) >> 31;
                    }
                    // 小于阈值的sad数目为i
                    nmvsad = i;
                }
               
                // 这段代码的作用是迭代剔除目前数组中的最大者
                // 知道 nmvsad <= limit
                while( nmvsad > limit )
                {
                    int bi = 0;
                    for( int i = 1; i < nmvsad; i++ )
                        if( mvsads[i].sad > mvsads[bi].sad )
                            bi = i;
                    nmvsad--;
                    if( sizeof( mvsad_t ) == sizeof( uint64_t ) )
                        CP64( &mvsads[bi], &mvsads[nmvsad] );
                    else
                        mvsads[bi] = mvsads[nmvsad];
                }
                // 迭代在p_fenc 和 在以mvsads[i].mv[0], mvsads[i].mv[1]
                // 为原点的参考帧的Y平面求sad
                // 如果预测代价更小, 则替换bcost和bmx, bmy
                for( int i = 0; i < nmvsad; i++ )
                    COST_MV( mvsads[i].mv[0], mvsads[i].mv[1] );
            }
            else 
            {
                // h->mb.i_me_method == X264_ME_ESA
                // just ADS and SAD
                for( int my = min_y; my <= max_y; my++ )
                {
                    int i;
                    // 初始化ycost
                    int ycost = p_cost_mvy[my<<2];
                    if( bcost <= ycost )
                        continue;
                       
                    // 获得剩余代价
                    bcost -= ycost;
                    // h->pixf.ads[0] = x264_pixel_ads4
          // static int x264_pixel_ads4( int enc_dc[4], uint16_t *sums, int delta,
          //            uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
          // {
          //    int nmv = 0;
          //    for( int i = 0; i < width; i++, sums++ )
          //    {
          //        int ads = abs( enc_dc[0] - sums[0] )
          //                + abs( enc_dc[1] - sums[8] )
          //                + abs( enc_dc[2] - sums[delta] )
          //                + abs( enc_dc[3] - sums[delta+8] )
          //                + cost_mvx[i];
          //        if( ads < thresh )
          //            mvs[nmv++] = i;
          //    }
          //    return nmv;
          // }
                    xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
                                               cost_fpel_mvx+min_x, xs, width, bcost );
                   

          // #define COST_MV_X3_ABS( m0x, m0y, m1x, m1y, m2x, m2y )\
          // {\
          //      // h->pixf.fpelcmp_x3 = x264_pixel_sad_x3_16x16
          //     h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
          //         p_fref_w + (m0x) + (m0y)*stride,\
          //         p_fref_w + (m1x) + (m1y)*stride,\
          //         p_fref_w + (m2x) + (m2y)*stride,\
          //         stride, costs );\
          //     costs[0] += p_cost_mvx[(m0x)<<2]; /* no cost_mvy */\
          //     costs[1] += p_cost_mvx[(m1x)<<2];\
          //     costs[2] += p_cost_mvx[(m2x)<<2];\
          //     COPY3_IF_LT( bcost, costs[0], bmx, m0x, bmy, m0y );\
          //     COPY3_IF_LT( bcost, costs[1], bmx, m1x, bmy, m1y );\
          //     COPY3_IF_LT( bcost, costs[2], bmx, m2x, bmy, m2y );\
          // }
                    // 迭代预测三个点, 如果有更佳的候选者, 则替换bcost, bmx, bmy
                    for( i = 0; i < xn-2; i += 3 )
                        COST_MV_X3_ABS( min_x+xs[i],my, min_x+xs[i+1],my, min_x+xs[i+2],my );
                   
                    // 补偿bcost
                    bcost += ycost;
                    // 迭代计算在p_fenc和以min_x + xs[i], my为原点的参考帧
                    // Y平面之间的SAD
                    // 如果有更佳的, 替换bcost和bmx, bmy
                    for( ; i < xn; i++ )
                        COST_MV( min_x+xs[i], my );
                }
            }
#endif
        }
        break;
    }

    /* -> qpel mv */
   
    // 打包候选的预测运动向量
    uint32_t bmv = pack16to32_mask(bmx,bmy);
    // 打包1/4像素坐标
    uint32_t bmv_spel = SPELx2(bmv);
    if( h->mb.i_subpel_refine < 3 )
    {
        m->cost_mv = p_cost_mvx[bmx<<2] + p_cost_mvy[bmy<<2];
        // 设定最后的cost
        m->cost = bcost;
        /* compute the real cost */
        if( bmv == pmv ) m->cost += m->cost_mv;
        // 设定最佳的预测运动向量
        M32( m->mv ) = bmv_spel;
    }
    else
    {
        // 根据bpred_cost(from mvp) 与 bcost的大小
        // 选择最佳预测运动向量 bpred_mv 或 bmv_spel
        // 同时也选择最小代价
        M32(m->mv) = bpred_cost < bcost ? bpred_mv : bmv_spel;
        m->cost = X264_MIN( bpred_cost, bcost );
    }

    /* subpel refine */
    if( h->mb.i_subpel_refine >= 2 )
    {
        // 子像素预测,进一步精化提炼
        int hpel = subpel_iterations[h->mb.i_subpel_refine][2];
        int qpel = subpel_iterations[h->mb.i_subpel_refine][3];
        // 参见 refine_subpel 分析
        refine_subpel( h, m, hpel, qpel, p_halfpel_thresh, 0 );
    }
}

/* initialize an array of lambda*nbits for all possible mvs */
static void x264_mb_analyse_load_costs( x264_t *h, x264_mb_analysis_t *a )
{
    a->p_cost_mv = h->cost_mv[a->i_qp];
    a->p_cost_ref[0] = x264_cost_ref[a->i_qp][x264_clip3(h->sh.i_num_ref_idx_l0_active-1,0,2)];
    a->p_cost_ref[1] = x264_cost_ref[a->i_qp][x264_clip3(h->sh.i_num_ref_idx_l1_active-1,0,2)];
}

int x264_analyse_init_costs( x264_t *h, float *logs, int qp )
{
    int lambda = x264_lambda_tab[qp];
    if( h->cost_mv[qp] )
        return 0;
    /* factor of 4 from qpel, 2 from sign, and 2 because mv can be opposite from mvp */
    CHECKED_MALLOC( h->cost_mv[qp], (4*4*2048 + 1) * sizeof(uint16_t) );
    h->cost_mv[qp] += 2*4*2048;
    for( int i = 0; i <= 2*4*2048; i++ )
    {
        h->cost_mv[qp][-i] =
        h->cost_mv[qp][i]  = X264_MIN( lambda * logs[i] + .5f, (1<<16)-1 );
    }
    x264_pthread_mutex_lock( &cost_ref_mutex );
    for( int i = 0; i < 3; i++ )
        for( int j = 0; j < 33; j++ )
            x264_cost_ref[qp][i][j] = X264_MIN( i ? lambda * bs_size_te( i, j ) : 0, (1<<16)-1 );
    x264_pthread_mutex_unlock( &cost_ref_mutex );
    if( h->param.analyse.i_me_method >= X264_ME_ESA && !h->cost_mv_fpel[qp][0] )
    {
        for( int j = 0; j < 4; j++ )
        {
            CHECKED_MALLOC( h->cost_mv_fpel[qp][j], (4*2048 + 1) * sizeof(uint16_t) );
            h->cost_mv_fpel[qp][j] += 2*2048;
            for( int i = -2*2048; i < 2*2048; i++ )
                h->cost_mv_fpel[qp][j][i] = h->cost_mv[qp][i*4+j];
        }
    }
    uint16_t *cost_i4x4_mode = (uint16_t*)ALIGN((intptr_t)x264_cost_i4x4_mode,64) + qp*32;
    for( int i = 0; i < 17; i++ )
        cost_i4x4_mode[i] = 3*lambda*(i!=8);
    return 0;
fail:
    return -1;
}

#define COST_MV_HPEL( mx, my, cost )\
do\
{\
    intptr_t stride2 = 16;\
    // call get_ref, 见 get_ref
    pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\
    // call h->pixf.fpelcmp[0] = x264_pixel_sad_16x16, 见 PIXEL_SAD_C( x264_pixel_sad_16x16, 16, 16 )
    cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\
         + p_cost_mvx[ mx ] + p_cost_mvy[ my ];\
} while(0)

static pixel *get_ref( pixel *dst,   intptr_t *i_dst_stride,
                       pixel *src[4], intptr_t i_src_stride,
                       int mvx, int mvy,
                       int i_width, int i_height, const x264_weight_t *weight )
{
    // mvx, mvy 表示需要进行1/4像素插值的1/4 像素点的坐标
    // 如(1, 1) 就表示需要求1/4像素点(1, 1)的插值
    // 这需要用到水平1/2和垂直1/2像素点平面
   
    // 对于水平两个相邻整像素位, 其位置可用0, 1表示
    // 放大到子像素后, 其位置变为0, 4,
    // 其中的1, 2,3 分别表示 1/4, 2/4, 3/4像素位
    // 因此如果 mvx & 3 == 1, 表示水平1/4像素位
    // mvx & 3 == 2, 表示水平2/4 = 1/2 像素位
    // mvx & == 3, 表示水平 3/4 像素位
    //
    int qpel_idx = ((mvy&3)<<2) + (mvx&3);
    int offset = (mvy>>2)*i_src_stride + (mvx>>2);
   
    // 传入的 src = m->p_fref 是一个指针数组,
    // 这个是在 x264_mb_analyse_inter_p16x16 函数中
    // 调用 LOAD_HPELS 进行装载的
    // src[0] 指向 整像素平面, src[1] 指向 1/2 像素平面
    // src[2] 指向垂直 1/2 像素平面, src[3] 指向斜对角 1/2 像素平面
    // 这些平面是为计算 1/4 像素准备的, 1/4 插值是取两个像素的中值
    // 因此需要两个平面
    // 对于 G x b x G
    //      y z y z y
    //      h x i x h
    //      y z y z y
    //      G x b x G
    //  其中G是整像素,对应src[0];
    //  b 水平方向 1/2 像素,对应src[1];
    //  h 是垂直方向 1/2 像素,对应src[2];
    //  i 是 斜对角方向 1/2 像素, 对应src[3];
    //  如想计算i左上角z的像素值, 即pixel(1, 1)的值
    //  那么就需要水平1/2像素平面,和垂直1/2像素平面
    //  pixel(1,1) = (pixel(0,2 ) + pixel(2, 0) + 1) >>1
   
    // 获取其中一个平面的像素位
    // hpel_ref0[qpel_idx] 得到平面索引
    // src[hpel_ref0[qpel_idx]] + offset 得到该平面整像素位地址
    // 那么src1得到的上面地址,或向垂直方向移动一行,到下一个整像素
    // 点
    pixel *src1 = src[hpel_ref0[qpel_idx]] + offset + ((mvy&3) == 3) * i_src_stride;

    // 需要进行 1/4 像素插值
    if( qpel_idx & 5 ) /* qpel interpolation needed */
    {
        // 如果qpel_idx & 5 不为0,
        // 则说明水平或垂直方向的 1/4,或 3/4 像素位需要插值
        // src2 指向 hpel_ref1[pel_idx]平面索引所指平面
        // 并偏移 offset, 在x方向可能需要偏移一个像素
        pixel *src2 = src[hpel_ref1[qpel_idx]] + offset + ((mvx&3) == 3);
        pixel_avg( dst, *i_dst_stride, src1, i_src_stride,
                   src2, i_src_stride, i_width, i_height );
        if( weight->weightfn )
            mc_weight( dst, *i_dst_stride, dst, *i_dst_stride, weight, i_width, i_height );
        return dst;
    }
    else if( weight->weightfn )
    {
        mc_weight( dst, *i_dst_stride, src1, i_src_stride, weight, i_width, i_height );
        return dst;
    }
    else
    {
        *i_dst_stride = i_src_stride;
        return src1;
    }
}

#define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\
{\
    // 根据候选的最佳预测运动向量,定位到参考帧的相应位置
    pixel *pix_base = p_fref_w + bmx + bmy*stride;\
   
    // call x264_pixel_sad_x3_16x16 对三个点方向分别计算 SAD
    // 把每个方向计算的代价保存在costs数组中
    h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
        pix_base + (m0x) + (m0y)*stride,\
        pix_base + (m1x) + (m1y)*stride,\
        pix_base + (m2x) + (m2y)*stride,\
        stride, costs );\
    // 每个代价加上相应的实验数据
    (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
    (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
    (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
}

#define BITS_MVD( mx, my )\
    (p_cost_mvx[(mx)<<2] + p_cost_mvy[(my)<<2])
   
#define CROSS( start, x_max, y_max )\
{\
    // 设定i=start, start表示以omx, omy为中心的起始搜索半径
    int i = start;\
    // 如果没有越界
    // 搜索以omx, omy为中心, x方向正负方向对称的各两个点
    // 如果有更小代价的,则替换bcost和bmx, bmy
    if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\
        for( ; i < (x_max)-2; i+=4 )\
            COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\
    // 搜索剩余的搜索范围
    for( ; i < (x_max); i+=2 )\
    {\  
        // 如果omx + i 没有越界
        // 预测omx+i, omy这个点,
        // 如果其代价更小, 则替换bcost, bmx, bmy
        if( omx+i <= mv_x_max )\
            COST_MV( omx+i, omy );\
        // 反向预测omx - i, omy点
        // 如果其代价更小, 则替换bcost, bmx, bmy
        if( omx-i >= mv_x_min )\
            COST_MV( omx-i, omy );\
    }\
    // 对y方向进行类似搜索
    i = start;\
    if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\
        for( ; i < (y_max)-2; i+=4 )\
            COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\
    for( ; i < (y_max); i+=2 )\
    {\
        if( omy+i <= mv_y_max )\
            COST_MV( omx, omy+i );\
        if( omy-i >= mv_y_min )\
            COST_MV( omx, omy-i );\
    }\
}

#define LOAD_FENC(m, src, xoff, yoff) \
{ \
    (m)->p_cost_mv = a->p_cost_mv; \
    (m)->i_stride[0] = h->mb.pic.i_stride[0]; \
    (m)->i_stride[1] = h->mb.pic.i_stride[1]; \
    (m)->i_stride[2] = h->mb.pic.i_stride[2]; \
    (m)->p_fenc[0] = &(src)[0][(xoff)+(yoff)*FENC_STRIDE]; \
    (m)->p_fenc[1] = &(src)[1][((xoff)>>CHROMA_H_SHIFT)+((yoff)>>CHROMA_V_SHIFT)*FENC_STRIDE]; \
    (m)->p_fenc[2] = &(src)[2][((xoff)>>CHROMA_H_SHIFT)+((yoff)>>CHROMA_V_SHIFT)*FENC_STRIDE]; \
}


0 0
原创粉丝点击