Linux--命令--gcc

来源:互联网 发布:淘宝被扣24分怎么办 编辑:程序博客网 时间:2024/06/06 16:36

gcc使用

简介

    GCC 的意思也只是 GNU C Compiler 而已。经过了这么多年的发展,GCC 已经不仅仅能支持 C 语言;它现在还支持 Ada 语言、C++ 语言、Java 语言、Objective C 语言、Pascal 语言、COBOL语言,以及支持函数式编程和逻辑编程的 Mercury 语言,等等。而 GCC 也不再单只是 GNU C 语言编译器的意思了,而是变成了 GNU Compiler Collection 也即是 GNU 编译器家族的意思了。另一方面,说到 GCC 对于操作系统平台及硬件平台支持,概括起来就是一句话:无所不在。
    编译过程是分为四个阶段进行的,即预处理(也称预编译,Preprocessing)、编译(Compilation)、汇编 (Assembly)和连接(Linking)。
1.预处理,生成.i的文件[预处理器cpp]
2.将预处理后的文件不转换成汇编语言,生成文件.s[编译器egcs]
3.有汇编变为目标代码(机器代码)生成.o的文件[汇编器as]
4.连接目标代码,生成可执行程序[链接器ld]

    gcc包含的c/c++编译器:gcc,cc,c++,g++,gcc和cc是一样的,c++和g++是一样的。一般c程序就用gcc编译,c++程序就用g++编译。

原理

1、预处理(Preprocessing)
gcc -E test.c -o test.i
或 gcc -E test.c
gcc的-E选项,可以让编译器在预处理后停止,并输出预处理结果。可以输出test.i文件中存放着test.c经预处理之后的代码。在本例中,预处理结果就是将stdio.h 文件中的内容插入到test.c中了。
2、编译(Compilation)
gcc -S test.i -o test.s
预处理之后,可直接对生成的test.i文件编译,生成汇编代码。gcc的-S选项,表示在程序编译期间,在生成汇编代码后,停止,-o输出汇编代码文件。
3、汇编(Assembly)
gcc -c test.s -o test.o
对于前面生成的汇编代码文件test.s,gas汇编器负责将其编译为目标文件。
4、连接(Linking)
gcc test.o -o test
gcc连接器是gas提供的,负责将程序的目标文件与所需的所有附加的目标文件连接起来,最终生成可执行文件。附加的目标文件包括静态连接库和动态连接库。对于上一小节中生成的test.o,将其与C标准输入输出库进行连接,最终生成程序test

常用介绍

如何检错

    GCC有一些其它编译选项也能够产生有用的警告信息:
-pedantic编译选项并不能保证被编译程序与ANSI/ISO C标准的完全兼容,它仅仅只能用来帮助Linux程序员离这个目标越来越近。或者换句话说,-pedantic选项能够帮助程序员发现一些不符合 ANSI/ISO C标准的代码,但不是全部,事实上只有ANSI/ISO C语言标准中要求进行编译器诊断的那些情况,才有可能被GCC发现并提出警告。
gcc -pedantic illcode.c -o illcode
-Wall,使用它能够使GCC产生尽可能多的警告信息。
gcc -Wall illcode.c -o illcode
    GCC给出的警告信息虽然从严格意义上说不能算作错误,但却很可能成为错误的栖身之所。一个优秀的Linux程序员应该尽量避免产生警告信息,使自己的代码始终保持标准、健壮的特性。所以将警告信息当成编码错误来对待,是一种值得赞扬的行为!所以,在编译程序时带上-Werror选项,那么GCC会在所有产生警告的地方停止编译,迫使程序员对自己的代码进行修改,如下:
gcc -Werror test.c -o test

多程序文件编译

    通常整个程序是由多个源文件组成的,相应地也就形成了多个编译单元,使用GCC能够很好地管理这些编译单元。假设有一个由test1.c和 test2.c两个源文件组成的程序,为了对它们进行编译,并最终生成可执行程序test,可以使用下面这条命令:
gcc test1.c test2.c -o test
如果同时处理的文件不止一个,GCC仍然会按照预处理、编译和链接的过程依次进行。如果深究起来,上面这条命令大致相当于依次执行如下三条命令:
gcc -c test1.c -o test1.o
gcc -c test2.c -o test2.o
gcc test1.o test2.o -o test

交叉编译

    交叉编译通俗地讲就是在一种平台上编译出能运行在体系结构不同的另一种平台上,比如在我们地PC平台(X86 CPU)上编译出能运行在sparc CPU平台上的程序,编译得到的程序在X86 CPU平台上是不能运行的,必须放到sparc CPU平台上才能运行。当然两个平台用的都是linux。这种方法在异平台移植和嵌入式开发时用得非常普遍。相对与交叉编译,我们平常做的编译就叫本地编译,也就是在当前平台编译,编译得到的程序也是在本地执行。用来编译这种程序的编译器就叫交叉编译器,相对来说,用来做本地编译的就叫本地编译器,一般用的都是gcc,但这种gcc跟本地的gcc编译器是不一样的,需要在编译gcc时用特定的configure参数才能得到支持交叉编译的gcc。为了不跟本地编译器混淆,交叉编译器的名字一般都有前缀,比如sparc-xxxx-linux-gnu-gcc,sparc-xxxx-linux-gnu-g++ 等等
    交叉编译器的使用方法使用方法跟本地的gcc差不多,但有一点特殊的是:必须用-L和-I参数指定编译器用sparc系统的库和头文件,不能用本地(X86)的库(头文件有时可以用本地的)。例子:
sparc-xxxx-linux-gnu-gcc test.c -L/path/to/sparcLib -I/path/to/sparcInclude

如何检错

    GCC有一些其它编译选项也能够产生有用的警告信息:
-pedantic编译选项并不能保证被编译程序与ANSI/ISO C标准的完全兼容,它仅仅只能用来帮助Linux程序员离这个目标越来越近。或者换句话说,-pedantic选项能够帮助程序员发现一些不符合 ANSI/ISO C标准的代码,但不是全部,事实上只有ANSI/ISO C语言标准中要求进行编译器诊断的那些情况,才有可能被GCC发现并提出警告。
gcc -pedantic illcode.c -o illcode
-Wall,使用它能够使GCC产生尽可能多的警告信息。
gcc -Wall illcode.c -o illcode
    GCC给出的警告信息虽然从严格意义上说不能算作错误,但却很可能成为错误的栖身之所。一个优秀的Linux程序员应该尽量避免产生警告信息,使自己的代码始终保持标准、健壮的特性。所以将警告信息当成编码错误来对待,是一种值得赞扬的行为!所以,在编译程序时带上-Werror选项,那么GCC会在所有产生警告的地方停止编译,迫使程序员对自己的代码进行修改,如下:
gcc -Werror test.c -o test

库文件连接

    Linux下的库文件分为两大类分别是动态链接库(通常以.so结尾)和静态链接库(通常以.a结尾),二者的区别仅在于程序执行时所需的代码是在运行时动态加载的还是在编译时静态加载的。当要使用静态的程序库时,连接器会找出程序所需的函数,然后将它们拷贝到执行文件,由于这种拷贝是完整的,所以一旦连接成功,静态程序库也就不再需要了。然而,对动态库其会在执行程序内留下一个标记指明当程序执行时,首先必须载入这个库。由于动态库节省空间,linux下进行连接的缺省操作是首先连接动态库。

查看库中符号

    有时候可能需要查看一个库中到底有哪些函数,nm命令可以打印出库中的涉及到的所有符号。库既可以是静态的也可以是动态的。nm列出的符号有很多,常见的有三种:
        一种是在库中被调用,但并没有在库中定义(表明需要其他库支持),用U表示;
        一种是库中定义的函数,用T表示,这是最常见的;
        一种是所谓的“弱 态”符号,它们虽然在库中被定义,但是可能被其他库中的同名符号覆盖,用W表示。
    例如,假设开发者希望知道上文提到的hello库中是否定义了 printf():
$nm libhello.so |grep printf U
    其中printf U表示符号printf被引用,但是并没有在函数内定义,由此可以推断,要正常使用hello库,必须有其它库支持,再使用ldd命令查看hello依赖于哪些库:
$ldd hello libc.so.6=>/lib/libc.so.6(0x400la000) /lib/ld-linux.so.2=>/lib/ld-linux.so.2 (0x40000000)
    从上面的结果可以继续查看printf最终在哪里被定义。

搜索路径顺序

有关环境变量

LIBRARY_PATH环境变量:指定程序静态链接库文件搜索路径
LD_LIBRARY_PATH环境变量:指定程序动态链接库文件搜索路径

环境变量设定方法:export ENV_NAME=xxxxxxxxxxxxxxxxx

静态库链接搜索路径顺序

a. ld会去找GCC命令中的参数-L
b. 再找gcc的环境变量LIBRARY_PATH
c. 再找内定目录/lib /usr/lib /usr/local/lib。

动态链接、执行搜索路径顺序

a. 编译目标代码时指定的动态库搜索路径
b. 环境变量LD_LIBRARY_PATH指定的动态库搜索路径
c. 配置文件/etc/ld.so.conf中指定的动态库搜索路径
d. 默认的动态库搜索路径/lib或者/usr/lib

动态库路径问题

为了让执行程序顺利找到动态库,有三种方法:
a、把库拷贝到/usr/lib和/lib目录下。
b、在LD_LIBRARY_PATH环境变量中加上库所在路径。例如动态库libhello.so在/opt/lib/c++目录下,以bash为例,使用命令:$export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/lib/c++
c、修改/etc/ld.so.conf文件,把库所在的路径加到文件末尾,并执行ldconfig刷新。这样,加入的目录下的所有库文件都可见。

函数库示例

    在创建函数库前,我们先来准备举例用的源程序,并将函数库的源程序编译成.o文件。

得到.o文件

1.1、编辑得到举例的程序--hello.h、hello.c和main.c
程序1:hello.h为该函数库的头文件。
#ifndef HELLO_H
#define HELLO_H
void hello(const char *name);
#endif //HELLO_H
程序2:hello.c是函数库的源程序,其中包含公用函数hello,该函数将在屏幕上输出"Hello XXX!"。
#include <stdio.h>
void hello(const char *name)
{
  printf("Hello %s!\n", name);
}
程序3:main.c为测试库文件的主程序,在主程序中调用了公用函数hello。
#include "hello.h"
int main()
{
  hello("everyone");
  return 0;
}
1.2无论静态库,还是动态库,都是由.o文件创建的。因此,我们必须将源程序hello.c通过gcc先编译成.o文件。
在系统提示符下键入以下命令得到hello.o文件。
# gcc -c hello.c
我们运行ls命令看看是否生存了hello.o文件。
# ls
hello.c hello.h hello.o main.c
在ls命令结果中,我们看到了hello.o文件,本步操作完成。
--------------------------------------------------------------------------------

由.o文件创建静态库
用ar命令创建静态库

    静态库文件名的命名规范是以lib为前缀,紧接着跟静态库名,扩展名为.a。例如:我们将创建的静态库名为myhello,则静态库文件名就是libmyhello.a。在创建和使用静态库时,需要注意这点。在系统提示符下键入以下命令将创建静态库文件libmyhello.a。
# ar cr libmyhello.a hello.o
    我们同样运行ls命令查看结果:
# ls
hello.c hello.h hello.o libmyhello.a main.c
    ls命令结果中有libmyhello.a。

在程序中使用静态库

    静态库制作完了,如何使用它内部的函数呢?只需要在使用到这些公用函数的源程序中包含这些公用函数的原型声明,然后在用gcc命令生成目标文件时指明静态库名,gcc将会从静态库中将公用函数连接到目标文件中。注意,gcc会在静态库名前加上前缀lib,然后追加扩展名.a得到的静态库文件名来查找静态库文件。在程序3:main.c中,我们包含了静态库的头文件hello.h,然后在主程序main中直接调用公用函数hello。下面先生成目标程序hello,然后运行hello程序看看结果如何。
# gcc -o hello main.c -L. -lmyhello
# ./hello
Hello everyone!
    我们删除静态库文件试试公用函数hello是否真的连接到目标文件 hello中了。
# rm libmyhello.a
# ./hello
Hello everyone!
    程序照常运行,静态库中的公用函数已经连接到目标文件中了。

由.o文件创建动态库文件
用gcc来创建动态库

    动态库文件名命名规范和静态库文件名命名规范类似,也是在动态库名增加前缀lib,但其文件扩展名为.so。例如:我们将创建的动态库名为myhello,则动态库文件名就是libmyhello.so。在系统提示符下键入以下命令得到动态库文件libmyhello.so。
# gcc -shared -fPCI -o libmyhello.so hello.o
#
    我们照样使用ls命令看看动态库文件是否生成。
# ls
hello.c hello.h hello.o libmyhello.so main.c

在程序中使用动态库

    在程序中使用动态库和使用静态库完全一样,也是在使用到这些公用函数的源程序中包含这些公用函数的原型声明,然后在用gcc命令生成目标文件时指明动态库名进行编译。我们先运行gcc命令生成目标文件,再运行它看看结果。
# gcc -o hello main.c -L. -lmyhello
# ./hello
./hello: error while loading shared libraries: libmyhello.so: cannot open shared object file: No such file or directory
    哦!出错了。快看看错误提示,原来是找不到动态库文件libmyhello.so。程序在运行时,会在/usr/lib和/lib等目录中查找需要的动态库文件。若找到,则载入动态库,否则将提示类似上述错误而终止程序运行。我们将文件libmyhello.so复制到目录/usr/lib中,再试试。
# mv libmyhello.so /usr/lib
# ./hello
Hello everyone!
    成功了。这也进一步说明了动态库在程序运行时是需要的。

深度理解

    我们回过头看看,发现使用静态库和使用动态库编译成目标程序使用的gcc命令完全一样,那当静态库和动态库同名时,gcc命令会使用哪个库文件呢?抱着对问题必究到底的心情,来试试看。
    先删除 除.c和.h外的 所有文件,恢复成我们刚刚编辑完举例程序状态。
# rm -f hello hello.o /usr/lib/libmyhello.so
# ls
hello.c hello.h main.c
    再来创建静态库文件libmyhello.a和动态库文件libmyhello.so。
# gcc -c hello.c
# ar cr libmyhello.a hello.o
# gcc -shared -fPCI -o libmyhello.so hello.o
# ls
hello.c hello.h hello.o libmyhello.a libmyhello.so main.c
   通过上述最后一条ls命令,可以发现静态库文件libmyhello.a和动态库文件libmyhello.so都已经生成,并都在当前目录中。然后,我们运行gcc命令来使用函数库myhello生成目标文件hello,并运行程序 hello。
# gcc -o hello main.c -L. -lmyhello
# ./hello
./hello: error while loading shared libraries: libmyhello.so: cannot open shared object file: No such file or directory
    从程序hello运行的结果中很容易知道,当静态库和动态库同名时, gcc命令将优先使用动态库。 

gcc主要选项

1、-l参数和-L参数
    -l参数 就是用来指定程序要链接的库,-l参数紧接着就是库名。就拿数学库来说,他的库名是m,他的库文件名是libm.so,很容易看出,把库文件名的头lib和尾.so去掉就是库名了。放在/lib和/usr/lib和/usr/local/lib里的库直接用-l参数就能链接了,但如果库文件没放在这三个目录里,而是放在其他目录里,这时我们只用-l参数的话,链接还是会出错,出错信息大概是:“/usr/bin/ld: cannot find -lxxx”,也就是链接程序ld在那3个目录里找不到libxxx.so,这时另外一个参数-L就派上用场了,比如常用的X11的库,它放在/usr/X11R6/lib目录下,我们编译时就要用-L/usr/X11R6/lib -lX11参数,-L参数跟着的是库文件所在的目录名。
    另外,大部分libxxxx.so只是一个链接,以RH9为例,比如libm.so它链接到/lib/libm.so.x,/lib/libm.so.6又链接到/lib/libm-2.3.2.so,如果没有这样的链接,还是会出错,因为ld只会找libxxxx.so,所以如果你要用到xxxx库,而只有libxxxx.so.x或者libxxxx-x.x.x.so,做一个链接就可以了ln -s libxxxx-x.x.x.so libxxxx.so手工来写链接参数总是很麻烦的,还好很多库开发包提供了生成链接参数的程序,名字一般叫xxxx-config,一般放在/usr/bin目录下,比如gtk1.2的链接参数生成程序是gtk-config,执行gtk-config --libs就能得到以下输出"-L/usr/lib -L/usr/X11R6/lib -lgtk -lgdk -rdynamic -lgmodule -lglib -ldl -lXi -lXext -lX11 -lm"。这就是编译一个gtk1.2程序所需的gtk链接参数,xxx-config除了--libs参数外还有一个参数是--cflags用来生成头文件包含目录的,也就是-I参数,在下面我们将会讲到。你可以试试执行gtk-config --libs --cflags,看看输出结果。现在的问题就是怎样用这些输出结果了,最笨的方法就是复制粘贴或者照抄,聪明的办法是在编译命令行里加入这个`xxxx-config --libs --cflags`,比如编译一个gtk程序:gcc gtktest.c `gtk-config --libs --cflags`这样就差不多了。注意`不是单引号,而是1键左边那个键。除了xxx-config以外,现在新的开发包一般都用pkg-config来生成链接参数,使用方法跟xxx-config类似,但xxx-config是针对特定的开发包,但pkg-config包含很多开发包的链接参数的生成,用pkg-config --list-all命令可以列出所支持的所有开发包,pkg-config的用法就是pkg-config pagName --libs --cflags,其中pagName是包名,是pkg-config--list-all里列出名单中的一个,比如gtk1.2的名字就是gtk+,pkg-config gtk+ --libs --cflags的作用跟gtk-config --libs --cflags是一样的。比如:gcc gtktest.c `pkg-config gtk+ --libs --cflags`。
2、-include和-I参数
    -include用来包含头文件,但一般情况下包含头文件都在源码里用#i nclude xxxxxx实现,-include参数很少用。-I参数是用来指定头文件目录,/usr/include目录一般是不用指定的,gcc知道去那里找,但是如果头文件不在/usr/include里我们就要用-I参数指定了,比如头文件放在/myinclude目录里,那编译命令行就要加上-I/myinclude参数了,如果不加你会得到一个"xxxx.h: No such file or directory"的错误。-I参数可以用相对路径,比如头文件在当前目录,可以用-I.来指定。上面我们提到的--cflags参数就是用来生成-I参数的。
3、-O参数
    这是一个程序优化参数,一般用-O2就是,用来优化程序用的,比如gcc test.c -O2,优化得到的程序比没优化的要小,执行速度可能也有所提高(我没有测试过)。
4、-shared参数
    编译动态库时要用到,比如gcc -shared test.c -o libtest.so
5、其他:
-o FILE 生成指定的输出文件。用在生成可执行文件时。
-g 生成调试信息。GNU 调试器可利用该信息。
-IDIRECTORY 指定额外的头文件搜索路径DIRECTORY。
-LDIRECTORY 指定额外的函数库搜索路径DIRECTORY。
-lLIBRARY 连接时搜索指定的函数库LIBRARY。
-shared 生成共享目标文件。通常用在建立共享库时。
-static 禁止使用共享连接。
-O0 不进行优化处理。
-O1 优化生成代码。
-O2 进一步优化。
-O3 比 -O2 更进一步优化,包括 inline 函数。
-w 不生成任何警告信息。
-Wall 生成所有警告信息。

0 0
原创粉丝点击