linux内核 bus driver device

来源:互联网 发布:风险指数矩阵 编辑:程序博客网 时间:2024/05/01 22:08

一、总线、设备和驱动函数在/sys/中的框架


首先要写三个函数,bus.cdevice.cdriver.c。这几个函数其实就是上一节函数的精简版,去掉属性文件的创建,仅仅保留创建和注销操作。

第一个函数是bus.c,加载模块会创建了一条名叫usb的总线,总线目录放在/sys/bus/目录下:

/*8th_devModule_2/1st/bus.c*/

6 struct bus_type usb_bus = {

7 .name = "usb",         //注册成功后将在/sys/bus目录下看到目录usb

8 };

9

10 static int __init usb_bus_init(void)

11 {

12 int ret;

13 /*总线注册,必须检测返回值*/

14 ret = bus_register(&usb_bus);

15 if(ret){

16 printk("bus register failed!\n");

17 return ret;

18 }

19

20 printk("usb bus init\n");

21 return 0;

22 }

23

24 static void __exit usb_bus_exit(void)

25 {

26 bus_unregister(&usb_bus);

27 printk("usb bus bye!\n");

28 }

第二个函数是device.c,加载模块会创建目录/sys/device/usb_device来管理这个usb设备。

由于该设备指定了所属的总线是usb_bus,所有会在/sys/bus/usb/device目录下创建一了指向usb_device的软连接。

同时,在卸载模块时,usb_deivce被删除,内核自动调用release函数,现实当中release函数应该做一些卸载设备的相关操作,但是我的usb设备是我虚拟出来的,所以release函数只是打印了一句话。

/*8th_devModule_2/1st/device.c*/

5 extern struct bus_type usb_bus;

6

7 void usb_dev_release(struct device *dev) //卸载函数没有干具体的事情

8 {

9 printk("<kernel> release\n");

10 }

11

12 struct device usb_device = {

13 .bus_id = "usb_device",

14 .bus = &usb_bus,                   //指定该设备的总线,/sys/bus/usb

15 .release = usb_dev_release, //必须要都有release函数,不然卸载时会出错

16 };

17

18 static int __init usb_device_init(void)

19 {

20 int ret;

21 /*设备注册,注册成功后在/sys/device目录下创建目录usb_device并在指定总线

22 * usb_bus的目录/sys/bus/usb/device创建/sys/device/usb_device的软连接*/

23 ret = device_register(&usb_device);

24 if(ret){

25 printk("device register failed!\n");

26 return ret;

27 }

28

29 printk("usb device init\n");

30 return 0;

31 }

32

33 static void __exit usb_device_exit(void)

34 {

35 device_unregister(&usb_device);

36 printk("usb device bye!\n");

37 }

第三个函数是driver.c,加载模块后会在指定的总线目录的driver目录,即/sys/bus/usb/driver目录下创建一个名叫usb_driver的目录来管理这个驱动函数。

/*8th_devModule_2/1st/driver.c*/

6 extern struct bus_type usb_bus;

7

8 struct device_driver usb_driver = {

9 .name = "usb_driver", ///sys/中的驱动目录名字

10 .bus = &usb_bus,      //必须指定驱动函数所属总线,不然不能注册。

11 };

12

13 static int __init usb_driver_init(void)

14 {

15 int ret;

16 /*驱动注册,注册成功后在/sys/bus/usb/driver目录下创建目录usb_driver*/

17 ret = driver_register(&usb_driver);

18 if(ret){

19 printk("driver register failed!\n");

20 return ret;

21 }

22 printk("usb driver init\n");

23 return 0;

24 }

25

26 static void __exit usb_driver_exit(void)

27 {

28 driver_unregister(&usb_driver);

29 printk("usb driver bye!\n");

30 }

接下来看看效果,因为设备和驱动的都指定了所属总线,所以必须先加载总线的模块。同样的,在卸载总线的模块前,必须先把设备和驱动的模块先卸载。



二、配对函数(match)、探测函数(probe)和卸载函数(remove)


现在讲一下三个函数:


第一个是配对函数(match),它是总线结构体bus_type的其中一个成员:

57 int (*match)(struct device *dev, struct device_driver *drv);

当总线上添加了新设备或者新驱动函数的时候,内核会调用一次或者多次这个函数。

举例,如果我现在添加了一个新的驱动函数,内核就会调用所属总线的match函数,配对总线上所有的设备,如果驱动能够处理其中一个设备,函数返回0,告诉内核配对成功。

一般的,match函数是判断设备的结构体成员device->bus_id和驱动函数的结构体成员device_driver->name是否一致,如果一致,那就表明配对成功

所以,bus.c修改如下,贴上修改的代码:

/*8th_devModule_2/2nd/bus.c*/

6 int usb_bus_match(struct device *dev, struct device_driver *drv)

7 {

8 if(!strcmp(dev->bus_id, drv->name)){

9 printk("match success\n"); //为了配对成功,设备的bus_id和驱动的name我都更改为

10 return 1;                             //usb_mouse,详细的可以查看device.cdriver.c

11 }else{

12 printk("match failed\n");

13 return 0;

14 }

15 }

16

17 struct bus_type usb_bus = {

18 .name = "usb",                    //注册成功后将在/sys/bus目录下看到目录usb

19 .match = usb_bus_match,

20 };


第二个是探测函数(probe),它是驱动函数结构体中的一个成员:

129 int (*probe) (struct device *dev);

当配对(match)成功后,内核就会调用指定驱动中的probe函数来查询设备能否被该驱动操作,如果可以,驱动就会对该设备进行相应的操作,如初始化。所以说,真正的驱动函数入口是在probe函数中

所以,driver.c修改如下:

/*8th_devModule_2/2nd/driver.c*/

8 void init_mouse(void)

9 {

10 printk("init usb mouse\n");

11 }

12

13 int usb_driver_probe(struct device *dev)

14 {//查询特定设备是否存在,以及是否能够才操作该设备,然后再进行设备操作。

15 //check_mouse(); //自己假设一下检查设备

16 init_mouse(); //usb鼠标驱动的真正入口

17 return 0;

18 }

。。。。。

26 struct device_driver usb_driver = {

27 .name = "usb_mouse", ///sys/中的驱动目录名字,为了配对成功,修改为usb_mouse

28 .bus = &usb_bus, //必须指定驱动函数所属总线,不然不能注册。

29 .probe = usb_driver_probe,

30 。。。。。

31 };


第三个是卸载函数(remove),它是驱动函数结构体中的一个成员:

130 int (*remove) (struct device *dev);

当该驱动函数或者驱动函数正在操作的设备被移除时,内核会调用驱动函数中的remove函数调用,进行一些设备卸载相应的操作。

所以,driver.c修改如下:

/*8th_devModule_2/2nd/driver.c*/

20 int usb_driver_remove(struct device *dev)

21 {

22 printk("remove mouse driver\n");

23 return 0;

24 }

25

26 struct device_driver usb_driver = {

27 .name = "usb_mouse", ///sys/中的驱动目录名字

28 .bus = &usb_bus, //必须指定驱动函数所属总线,不然不能注册。

29 .probe = usb_driver_probe,

30 .remove = usb_driver_remove,

31 };



match 执行地方:从driver_register看起:

int driver_register(struct device_driver * drv){ klist_init(&drv->klist_devices, klist_devices_get, klist_devices_put); init_completion(&drv->unloaded); return bus_add_driver(drv);}

klist_init与init_completion没去管它,可能是2.6的这个设备模型要做的一些工作。直觉告诉我要去bus_add_driver。

bus_add_driver中:
都是些Kobject 与 klist 、attr等。还是与设备模型有关的。但是其中有一句:
driver_attach(drv);
单听名字就很像:
void driver_attach(struct device_driver * drv){ bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);}
这个熟悉,遍历总线上的设备并设用__driver_attach。
在__driver_attach中又主要是这样:
driver_probe_device(drv, dev);
跑到driver_probe_device中去看看:
有一段很重要:
if (drv->bus->match && !drv->bus->match(dev, drv))
                goto Done;
明显,是调用的驱动的总线上的match函数。如果返回1,则可以继续,否则就Done了。
继承执行的话:
        if (drv->probe) {
                ret = drv->probe(dev);
                if (ret) {
                        dev->driver = NULL;
                        goto ProbeFailed;
                }
只要probe存在则调用之。至此就完成了probe的调用。



1、多个设备对应一个驱动:


下面要讲的情况是,如果多个设备与内核中的一个驱动函数配对成功时,内核会进行怎么样的操作,先看实例。

为了能够让多个设备配对成功,我将bus.c的配对条件修改了一下:

/*8th_devModule_2/3th/bus.c */

6 int usb_bus_match(struct device *dev, struct device_driver *drv)

7 { //仅仅配对名字的前9个字母是否相同

8 if(!strncmp(dev->bus_id, drv->name, 9)){

9 printk("match success\n");

10 return 1;

11 }else{

12 printk("match failed\n");

13 return 0;

14 }

15 }

同时在device.c的基础上拷贝了device1.cdevice2.c,三个程序都差不多,可以自己看看。接下来直接看效果:

[root: /]# cd /review_driver/8th_devModule/8th_devModule_2/3th

[root: 3th]# insmod bus.ko //先加载总线

usb bus init

[root: 3th]# insmod driver.ko //再加载驱动

usb driver init

[root: 3th]# insmod device.ko //当加载device.ko时,配对成功

match success

init usb mouse //内核调用驱动中的probe

usb device init

[root: 3th]# insmod device1.ko //再加载device1.ko,也配对成功

match success

init usb mouse //内核有调用驱动中的probe

usb device1 init

[root: 3th]# insmod device2.ko //加载device2.ko,配对不成功

match failed

usb device2 init

上面的验证表明,一个驱动可以对应多个设备。在联想起我举得男人女人——一个男人可以配对多个女人,哈哈。


2、一个设备对应多个驱动


这个例子中我将driver.c拷贝多了一个driver1.c,两个程序基本相同,都能配对成功,但看看效果:

[root: 3th]# insmod bus.ko //先加载总线

usb bus init

[root: 3th]# insmod device.ko //再加载设备

usb device init

[root: 3th]# insmod driver.ko //加载driver.ko

match success //配对成功

match success

init usb mouse //并且调用了probe

usb driver init

[root: 3th]# insmod driver1.ko //再加载driver1.ko

match success //因为名字的前9个字母一样,所以也会配对成功

usb driver1 init //但不会调用probe,因为已经有一个驱动跟该设备配对了。

上面的验证表明,一个设备只能对应一个驱动




0 0
原创粉丝点击