java 虚拟机类加载机制

来源:互联网 发布:网络机顶盒看电视直播 编辑:程序博客网 时间:2024/05/02 01:30

类加载过程

    类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载、验证、准备、解析、初始化、使用和卸载七个阶段。它们开始的顺序如下图所示:


    其中类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。在这五个阶段中,加载、验证、准备和初始化这四个阶段发生的顺序是确定的,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)。另外注意这里的几个阶段是按顺序开始,而不是按顺序进行完成,因为这些阶段通常都是互相交叉地混合进行的,通常在一个阶段执行的过程中调用或激活另一个阶段。

    这里简要说明下Java中的绑定:绑定指的是把一个方法的调用与方法所在的类(方法主体)关联起来,对java来说,绑定分为静态绑定和动态绑定:

  • 静态绑定:即前期绑定。在程序执行前方法已经被绑定,此时由编译器或其它连接程序实现。针对java,简单的可以理解为程序编译期的绑定。java当中的方法只有final,static,private和构造方法是前期绑定的。
  • 动态绑定:即晚期绑定,也叫运行时绑定。在运行时根据具体对象的类型进行绑定。在java中,几乎所有的方法都是后期绑定的。
    下面详细讲述类加载过程中每个阶段所做的工作。

   加载

    加载时类加载过程的第一个阶段,在加载阶段,虚拟机需要完成以下三件事情:

    1、通过一个类的全限定名来获取其定义的二进制字节流。

    2、将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。

    3、在Java堆中生成一个代表这个类的java.lang.Class对象,作为对方法区中这些数据的访问入口。

    注意,这里第1条中的二进制字节流并不只是单纯地从Class文件中获取,比如它还可以从Jar包中获取、从网络中获取(最典型的应用便是Applet)、由其他文件生成(JSP应用)等。

    相对于类加载的其他阶段而言,加载阶段(准确地说,是加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,因为开发人员既可以使用系统提供的类加载器来完成加载,也可以自定义自己的类加载器来完成加载。

    加载阶段完成后,虚拟机外部的 二进制字节流就按照虚拟机所需的格式存储在方法区之中,而且在Java堆中也创建一个java.lang.Class类的对象,这样便可以通过该对象访问方法区中的这些数据。

    说到加载,不得不提到类加载器,下面就具体讲述下类加载器。

    类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远远不限于类的加载阶段。对于任意一个类,都需要由它的类加载器和这个类本身一同确定其在就Java虚拟机中的唯一性,也就是说,即使两个类来源于同一个Class文件,只要加载它们的类加载器不同,那这两个类就必定不相等。这里的“相等”包括了代表类的Class对象的equals()、isAssignableFrom()、isInstance()等方法的返回结果,也包括了使用instanceof关键字对对象所属关系的判定结果。

    站在Java虚拟机的角度来讲,只存在两种不同的类加载器:

  • 启动类加载器:它使用C++实现(这里仅限于Hotspot,也就是JDK1.5之后默认的虚拟机,有很多其他的虚拟机是用Java语言实现的),是虚拟机自身的一部分。
  • 所有其他的类加载器:这些类加载器都由Java语言实现,独立于虚拟机之外,并且全部继承自抽象类java.lang.ClassLoader,这些类加载器需要由启动类加载器加载到内存中之后才能去加载其他的类。

    站在Java开发人员的角度来看,类加载器可以大致划分为以下三类:

  • 启动类加载器:Bootstrap ClassLoader,跟上面相同。它负责加载存放在JDK\jre\lib(JDK代表JDK的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.*开头的类均被Bootstrap ClassLoader加载)。启动类加载器是无法被Java程序直接引用的。
  • 扩展类加载器:Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载JDK\jre\lib\ext目录中,或者由java.ext.dirs系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器。
  • 应用程序类加载器:Application ClassLoader,该类加载器由sun.misc.Launcher$AppClassLoader来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

     应用程序都是由这三种类加载器互相配合进行加载的,如果有必要,我们还可以加入自定义的类加载器。因为JVM自带的ClassLoader只是懂得从本地文件系统加载标准的java class文件,因此如果编写了自己的ClassLoader,便可以做到如下几点:

 1)在执行非置信代码之前,自动验证数字签名。

 2)动态地创建符合用户特定需要的定制化构建类。

 3)从特定的场所取得java class,例如数据库中和网络中。

事实上当使用Applet的时候,就用到了特定的ClassLoader,因为这时需要从网络上加载java class,并且要检查相关的安全信息,应用服务器也大都使用了自定义的ClassLoader技术。

    这几种类加载器的层次关系如下图所示:


    这种层次关系称为类加载器的双亲委派模型。我们把每一层上面的类加载器叫做当前层类加载器的父加载器,当然,它们之间的父子关系并不是通过继承关系来实现的,而是使用组合关系来复用父加载器中的代码。该模型在JDK1.2期间被引入并广泛应用于之后几乎所有的Java程序中,但它并不是一个强制性的约束模型,而是Java设计者们推荐给开发者的一种类的加载器实现方式。

    双亲委派模型的工作流程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把请求委托给父加载器去完成,依次向上,因此,所有的类加载请求最终都应该被传递到顶层的启动类加载器中,只有当父加载器在它的搜索范围中没有找到所需的类时,即无法完成该加载,子加载器才会尝试自己去加载该类。

    使用双亲委派模型来组织类加载器之间的关系,有一个很明显的好处,就是Java类随着它的类加载器(说白了,就是它所在的目录)一起具备了一种带有优先级的层次关系,这对于保证Java程序的稳定运作很重要。例如,类java.lang.Object类存放在JDK\jre\lib下的rt.jar之中,因此无论是哪个类加载器要加载此类,最终都会委派给启动类加载器进行加载,这边保证了Object类在程序中的各种类加载器中都是同一个类。


   验证

    验证的目的是为了确保Class文件中的字节流包含的信息符合当前虚拟机的要求,而且不会危害虚拟机自身的安全。不同的虚拟机对类验证的实现可能会有所不同,但大致都会完成以下四个阶段的验证:文件格式的验证、元数据的验证、字节码验证和符号引用验证。

  • 文件格式的验证:验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理,该验证的主要目的是保证输入的字节流能正确地解析并存储于方法区之内。经过该阶段的验证后,字节流才会进入内存的方法区中进行存储,后面的三个验证都是基于方法区的存储结构进行的。
  • 元数据验证:对类的元数据信息进行语义校验(其实就是对类中的各数据类型进行语法校验),保证不存在不符合Java语法规范的元数据信息。
  • 字节码验证:该阶段验证的主要工作是进行数据流和控制流分析,对类的方法体进行校验分析,以保证被校验的类的方法在运行时不会做出危害虚拟机安全的行为。
  • 符号引用验证:这是最后一个阶段的验证,它发生在虚拟机将符号引用转化为直接引用的时候(解析阶段中发生该转化,后面会有讲解),主要是对类自身以外的信息(常量池中的各种符号引用)进行匹配性的校验。

   准备

    准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

    1、这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在Java堆中。

    2、这里所设置的初始值通常情况下是数据类型默认的零值(如0、0L、null、false等),而不是被在Java代码中被显式地赋予的值。

   假设一个类变量的定义为:

public static int value = 3;

    那么变量value在准备阶段过后的初始值为0,而不是3,因为这时候尚未开始执行任何Java方法,而把value赋值为3的putstatic指令是在程序编译后,存放于类构造器<clinit>()方法之中的,所以把value赋值为3的动作将在初始化阶段才会执行。

    下表列出了Java中所有基本数据类型以及reference类型的默认零值:


   这里还需要注意如下几点:

  • 对基本数据类型来说,对于类变量(static)和全局变量,如果不显式地对其赋值而直接使用,则系统会为其赋予默认的零值,而对于局部变量来说,在使用前必须显式地为其赋值,否则编译时不通过。
  • 对于同时被static和final修饰的常量,必须在声明的时候就为其显式地赋值,否则编译时不通过;而只被final修饰的常量则既可以在声明时显式地为其赋值,也可以在类初始化时显式地为其赋值,总之,在使用前必须为其显式地赋值,系统不会为其赋予默认零值。
  • 对于引用数据类型reference来说,如数组引用、对象引用等,如果没有对其进行显式地赋值而直接使用,系统都会为其赋予默认的零值,即null。
  • 如果在数组初始化时没有对数组中的各元素赋值,那么其中的元素将根据对应的数据类型而被赋予默认的零值。

    3、如果类字段的字段属性表中存在ConstantValue属性,即同时被final和static修饰,那么在准备阶段变量value就会被初始化为ConstValue属性所指定的值。

   假设上面的类变量value被定义为: 

public static final int value = 3;

    编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据ConstantValue的设置将value赋值为3。回忆上一篇博文中对象被动引用的第2个例子,便是这种情况。我们可以理解为static final常量在编译期就将其结果放入了调用它的类的常量池中。


   解析

   解析阶段是虚拟机将常量池中的符号引用转化为直接引用的过程。在Class类文件结构一文中已经比较过了符号引用和直接引用的区别和关联,这里不再赘述。前面说解析阶段可能开始于初始化之前,也可能在初始化之后开始,虚拟机会根据需要来判断,到底是在类被加载器加载时就对常量池中的符号引用进行解析(初始化之前),还是等到一个符号引用将要被使用前才去解析它(初始化之后)。
    对同一个符号引用进行多次解析请求时很常见的事情,虚拟机实现可能会对第一次解析的结果进行缓存(在运行时常量池中记录直接引用,并把常量标示为已解析状态),从而避免解析动作重复进行。
    解析动作主要针对类或接口、字段、类方法、接口方法四类符号引用进行,分别对应于常量池中的CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info、CONSTANT_InterfaceMethodref_info四种常量类型。
    1、类或接口的解析:判断所要转化成的直接引用是对数组类型,还是普通的对象类型的引用,从而进行不同的解析。
    2、字段解析:对字段进行解析时,会先在本类中查找是否包含有简单名称和字段描述符都与目标相匹配的字段,如果有,则查找结束;如果没有,则会按照继承关系从上往下递归搜索该类所实现的各个接口和它们的父接口,还没有,则按照继承关系从上往下递归搜索其父类,直至查找结束,查找流程如下图所示:


   从下面一段代码的执行结果中很容易看出来字段解析的搜索顺序:
class Super{      public static int m = 11;      static{          System.out.println("执行了super类静态语句块");      }  }      class Father extends Super{      public static int m = 33;      static{          System.out.println("执行了父类静态语句块");      }  }    class Child extends Father{      static{          System.out.println("执行了子类静态语句块");      }  }    public class StaticTest{      public static void main(String[] args){          System.out.println(Child.m);      }  } 
    执行结果如下:
    执行了super类静态语句块
    执行了父类静态语句块
    33

    如果注释掉Father类中对m定义的那一行,则输出结果如下:
    执行了super类静态语句块
    11
   另外,很明显这就是上篇博文中的第1个例子的情况,这里我们便可以分析如下:static变量发生在静态解析阶段,也即是初始化之前,此时已经将字段的符号引用转化为了内存引用,也便将它与对应的类关联在了一起,由于在子类中没有查找到与m相匹配的字段,那么m便不会与子类关联在一起,因此并不会触发子类的初始化。
    最后需要注意:理论上是按照上述顺序进行搜索解析,但在实际应用中,虚拟机的编译器实现可能要比上述规范要求的更严格一些。如果有一个同名字段同时出现在该类的接口和父类中,或同时在自己或父类的接口中出现,编译器可能会拒绝编译。如果对上面的代码做些修改,将Super改为接口,并将Child类继承Father类且实现Super接口,那么在编译时会报出如下错误:
StaticTest.java:24: 对 m 的引用不明确,Father 中的 变量 m 和 Super 中的 变量 m
都匹配
                System.out.println(Child.m);
                                        ^
1 错误

        3、类方法解析:对类方法的解析与对字段解析的搜索步骤差不多,只是多了判断该方法所处的是类还是接口的步骤,而且对类方法的匹配搜索,是先搜索父类,再搜索接口。
    4、接口方法解析:与类方法解析步骤类似,知识接口不会有父类,因此,只递归向上搜索父接口就行了。

    初始化

    初始化是类加载过程的最后一步,到了此阶段,才真正开始执行类中定义的Java程序代码。在准备阶段,类变量已经被赋过一次系统要求的初始值,而在初始化阶段,则是根据程序员通过程序指定的主观计划去初始化类变量和其他资源,或者可以从另一个角度来表达:初始化阶段是执行类构造器<clinit>()方法的过程。
   这里简单说明下<clinit>()方法的执行规则:
    1、<clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句中可以赋值,但是不能访问。
    2、<clinit>()方法与实例构造器<init>()方法(类的构造函数)不同,它不需要显式地调用父类构造器,虚拟机会保证在子类的<clinit>()方法执行之前,父类的<clinit>()方法已经执行完毕。因此,在虚拟机中第一个被执行的<clinit>()方法的类肯定是java.lang.Object。
    3、<clinit>()方法对于类或接口来说并不是必须的,如果一个类中没有静态语句块,也没有对类变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。
    4、接口中不能使用静态语句块,但仍然有类变量(final static)初始化的赋值操作,因此接口与类一样会生成<clinit>()方法。但是接口鱼类不同的是:执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法,只有当父接口中定义的变量被使用时,父接口才会被初始化。另外,接口的实现类在初始化时也一样不会执行接口的<clinit>()方法。
    5、虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确地加锁和同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。如果在一个类的<clinit>()方法中有耗时很长的操作,那就可能造成多个线程阻塞,在实际应用中这种阻塞往往是很隐蔽的。

    下面给出一个简单的例子,以便更清晰地说明如上规则:
class Father{      public static int a = 1;      static{          a = 2;      }  }    class Child extends Father{      public static int b = a;  }    public class ClinitTest{      public static void main(String[] args){          System.out.println(Child.b);      }  }  
   执行上面的代码,会打印出2,也就是说b的值被赋为了2。
    我们来看得到该结果的步骤。首先在准备阶段为类变量分配内存并设置类变量初始值,这样A和B均被赋值为默认值0,而后再在调用<clinit>()方法时给他们赋予程序中指定的值。当我们调用Child.b时,触发Child的<clinit>()方法,根据规则2,在此之前,要先执行完其父类Father的<clinit>()方法,又根据规则1,在执行<clinit>()方法时,需要按static语句或static变量赋值操作等在代码中出现的顺序来执行相关的static语句,因此当触发执行Father的<clinit>()方法时,会先将a赋值为1,再执行static语句块中语句,将a赋值为2,而后再执行Child类的<clinit>()方法,这样便会将b的赋值为2.
    如果我们颠倒一下Father类中“public static int a = 1;”语句和“static语句块”的顺序,程序执行后,则会打印出1。很明显是根据规则1,执行Father的<clinit>()方法时,根据顺序先执行了static语句块中的内容,后执行了“public static int a = 1;”语句。
    另外,在颠倒二者的顺序之后,如果在static语句块中对a进行访问(比如将a赋给某个变量),在编译时将会报错,因为根据规则1,它只能对a进行赋值,而不能访问。


总结

     整个类加载过程中,除了在加载阶段用户应用程序可以自定义类加载器参与之外,其余所有的动作完全由虚拟机主导和控制。到了初始化才开始执行类中定义的Java程序代码(亦及字节码),但这里的执行代码只是个开端,它仅限于<clinit>()方法。类加载过程中主要是将Class文件(准确地讲,应该是类的二进制字节流)加载到虚拟机内存中,真正执行字节码的操作,在加载完成后才真正开始。

总结:

深入探讨 Java 类加载器:http://www.ibm.com/developerworks/cn/java/j-lo-classloader/#download
加载类的过程
在前面介绍类加载器的代理模式的时候,提到过类加载器会首先代理给其它类加载器来尝试加载某个类。这就意味着真正完成类的加载工作的类加载器和启动这个加载过程的类加载器,有可能不是同一个。真正完成类的加载工作是通过调用 defineClass来实现的;而启动类的加载过程是通过调用 loadClass来实现的。前者称为一个类的定义加载器(defining loader),后者称为初始加载器(initiating loader)。在 Java 虚拟机判断两个类是否相同的时候,使用的是类的定义加载器。也就是说,哪个类加载器启动类的加载过程并不重要,重要的是最终定义这个类的加载器。两种类加载器的关联之处在于:一个类的定义加载器是它引用的其它类的初始加载器。如类 com.example.Outer引用了类 com.example.Inner,则由类 com.example.Outer的定义加载器负责启动类 com.example.Inner的加载过程。方法 loadClass()抛出的是 java.lang.ClassNotFoundException异常;方法 defineClass()抛出的是 java.lang.NoClassDefFoundError异常。类加载器在成功加载某个类之后,会把得到的 java.lang.Class类的实例缓存起来。下次再请求加载该类的时候,类加载器会直接使用缓存的类的实例,而不会尝试再次加载。也就是说,对于一个类加载器实例来说,相同全名的类只加载一次,即 loadClass方法不会被重复调用。

Java类加载器总结:http://blog.csdn.net/gjanyanlig/article/details/6818655


类的加载的最终产品是位于堆区中的Class对象
Class对象封装了类在方法区内的数据结构,并且向Java程序员提供了访问方法区内的数据结构的接口

类的层次关系和加载顺序

加载过程中会先检查类是否被已加载,检查顺序是自底向上,从Custom ClassLoader到BootStrap ClassLoader逐层检查,只要某个classloader已加载就视为已加载此类,保证此类只所有ClassLoader加载一次。而加载的顺序是自顶向下,也就是由上层来逐层尝试加载此类。

Java深度历险(二)——Java类的加载、链接和初始化:http://www.infoq.com/cn/articles/cf-Java-class-loader/
Java类加载器有两个比较重要的特征:
层次组织结构和代理模式。层次组织结构指的是每个类加载器都有一个父类加载器,通过getParent()方法可以获取到。类加载器通过这种父亲-后代的方式组织在一起,形成树状层次结构。代理模式则指的是一个类加载器既可以自己完成Java类的定义工作,也可以代理给其它的类加载器来完成。由于代理模式的存在,启动一个类的加载过程的类加载器和最终定义这个类的类加载器可能并不是一个。前者称为初始类加载器,而后者称为定义类加载器。两者的关联在于:一个Java类的定义类加载器是该类所导入的其它Java类的初始类加载器。比如类A通过import导入了类 B,那么由类A的定义类加载器负责启动类B的加载过程。

隔离空间:
类加载器的一个重要用途是在JVM中为相同名称的Java类创建隔离空间。在JVM中,判断两个类是否相同,不仅是根据该类的二进制名称,还需要根据两个类的定义类加载器。只有两者完全一样,才认为两个类的是相同的。因此,即便是同样的Java字节代码,被两个不同的类加载器定义之后,所得到的Java类也是不同的。如果试图在两个类的对象之间进行赋值操作,会抛出java.lang.ClassCastException。

Java类的链接
不同的JVM实现可能选择不同的解析策略。一种做法是在链接的时候,就递归的把所有依赖的形式引用都进行解析。而另外的做法则可能是只在一个形式引用真正需要的时候才进行解析。也就是说如果一个Java类只是被引用了,但是并没有被真正用到,那么这个类有可能就不会被解析。考虑下面的代码:
public class LinkTest {      public static void main(String[] args) {             ToBeLinked toBeLinked = null;             System.out.println("Test link.");      }}
类 LinkTest引用了类ToBeLinked,但是并没有真正使用它,只是声明了一个变量,并没有创建该类的实例或是访问其中的静态域。在 Oracle的JDK 6中,如果把编译好的ToBeLinked的Java字节代码删除之后,再运行LinkTest,程序不会抛出错误。这是因为ToBeLinked类没有被真正用到,而Oracle的JDK 6所采用的链接策略使得ToBeLinked类不会被加载,因此也不会发现ToBeLinked的Java字节代码实际上是不存在的。如果把代码改成ToBeLinked toBeLinked = new ToBeLinked();之后,再按照相同的方法运行,就会抛出异常了。因为这个时候ToBeLinked这个类被真正使用到了,会需要加载这个类。

Java类的初始化
Java类和接口的初始化只有在特定的时机才会发生,这些时机包括:
创建一个Java类的实例。如
MyClass obj = new MyClass()
调用一个Java类中的静态方法。如
MyClass.sayHello()
给Java类或接口中声明的静态域赋值。如
MyClass.value = 10
访问Java类或接口中声明的静态域,并且该域不是常值变量。如
int value = MyClass.value
在顶层Java类中执行assert语句。
通过Java反射API也可能造成类和接口的初始化。需要注意的是,当访问一个Java类或接口中的静态域的时候,只有真正声明这个域的类或接口才会被初始化。考虑下面的代码:
class B {      static int value = 100;      static {             System.out.println("Class B is initialized."); //输出      }}class A extends B {      static {             System.out.println("Class A is initialized."); //不会输出      }}public class InitTest {      public static void main(String[] args) {             System.out.println(A.value); //输出100      }}
在上述代码中,类InitTest通过A.value引用了类B中声明的静态域value。由于value是在类B中声明的,只有类B会被初始化,而类A则不会被初始化。

java类加载原理分析:http://blog.csdn.net/treeroot/article/details/960778
获得扩展类加载器加载的路径:
       String path=System.getProperty("java.ext.dirs");        File dir=new File(path);        if(!dir.exists()||!dir.isDirectory()){            return Collections.EMPTY_LIST;        }        File[] jars=dir.listFiles();        URL[] urls=new URL[jars.length];        for(int i=0;i<jars.length;i++){            urls[i]=sun.misc.URLClassPath.pathToURLs(jars[i].getAbsolutePath())[0];        }        return Arrays.asList(urls);
方法二:      try {              URL[] extURLs = ((URLClassLoader)ClassLoader.getSystemClassLoader().getParent()).getURLs();              for (int i = 0; i < extURLs.length; i++) {                     System.out.println(extURLs[i]);              }       } catch (Exception e) {//…}       本机对应输出如下:file:/D:/DEMO/jdk1.5.0_09/jre/lib/ext/dnsns.jarfile:/D:/DEMO/jdk1.5.0_09/jre/lib/ext/localedata.jarfile:/D:/DEMO/jdk1.5.0_09/jre/lib/ext/sunjce_provider.jarfile:/D:/DEMO/jdk1.5.0_09/jre/lib/ext/sunpkcs11.jar

如何获得某个类加载器加载了哪些类:
因为ClassLoader中有一个classes成员变量就是用来保存类加载器加载的类列表,而且有一个方法void addClass(Class c) { classes.addElement(c);}这个方法被JVM调用。我们只要利用反射获得classes这个值就可以了,不过classes声明为private的,我们需要修改它的访问权限(没有安全管理器时很容易做到)classes = ClassLoader.class.getDeclaredField("classes");classes.setAccessible(true);List ret=(List) classes.get(cl); //classes是一个Vector

Java类加载器:http://blog.csdn.net/johnny901114/article/details/7738958


Java 类加载基本原理:http://www.360doc.com/content/10/1206/11/1542811_75452334.shtml#
我们首先看一下 java.lang.ClassLoader 抽象类中默认实现的两个构造函数:
protected ClassLoader() {          SecurityManager security = System.getSecurityManager();          if (security != null) {              security.checkCreateClassLoader();          }          //默认将父类加载器设置为系统类加载器,getSystemClassLoader()获取系统类加载器          this.parent = getSystemClassLoader();          initialized = true;      }      protected ClassLoader(ClassLoader parent) {          SecurityManager security = System.getSecurityManager();          if (security != null) {              security.checkCreateClassLoader();          }          //强制设置父类加载器          this.parent = parent;          initialized = true;      }  
现在我们可能会有这样的疑问:扩展类加载器(ExtClassLoader)的父类加载器被强制设置为null了,那么扩展类加载器为什么还能将加载任务委派给启动类加载器呢?
标准扩展类加载器和系统类加载器及其父类(java.net.URLClassLoader和java.security.SecureClassLoader)都没有覆写java.lang.ClassLoader中默认的加载委派规则---loadClass(…)方法。有关java.lang.ClassLoader中默认的加载委派规则下面分析,如果父加载器为null,则会调用本地方法进行启动类加载尝试。
public Class<?> loadClass(String name)throws ClassNotFoundException {          return loadClass(name, false);  }    protected synchronized Class<?> loadClass(String name, boolean resolve)              throws ClassNotFoundException {          // 首先判断该类型是否已经被加载          Class c = findLoadedClass(name);          if (c == null) {              //如果没有被加载,就委托给父类加载或者委派给启动类加载器加载              try {                  if (parent != null) {                      //如果存在父类加载器,就委派给父类加载器加载                      c = parent.loadClass(name, false);                  } else {                     //如果不存在父类加载器,就检查是否是由启动类加载器加载的类,通过调用本地方法native Class findBootstrapClass(String name)                      c = findBootstrapClass0(name);                  }              } catch (ClassNotFoundException e) {                  // 如果父类加载器和启动类加载器都不能完成加载任务,才调用自身的加载功能                  c = findClass(name);              }          }          if (resolve) {              resolveClass(c);          }          return c;      }  
对于给定的类名,首先检查自己是否已加载过该类。如果没有,则首先通过父装载器加载(如果 parent==null ,则直接通过 BL 来加载,相当于 BL 是其父装载器)。如果父装载器也无法装载,才真正调用自己的 findClass() 方法来装载。
Java 基础类在 Java 虚拟机启动后由 BL 一次性载入。构成 Java 应用程序的其它类在程序运行过程中由不同类装载器按需通过 loadClass() 方法装载。
放置到< Java_Runtime_Home >/lib目录下的TestBean对应的class字节码并没有被加载,这其实和前面讲的双亲委派机制并不矛盾。虚拟机出于安全等因素考虑,不会加载< Java_Runtime_Home >/lib存在的陌生类,开发者通过将要加载的非JDK自身的类放置到此目录下期待启动类加载器加载是不可能的。

在代码中直接调用Class.forName(String name)方法,到底会触发那个类加载器进行类加载行为?
Class.forName(String name)默认会使用调用类的类加载器来进行类加载。我们直接来分析一下对应的jdk的代码:
//java.lang.Class.javapublicstatic Class<?> forName(String className)throws ClassNotFoundException {      return forName0(className, true, ClassLoader.getCallerClassLoader());}//java.lang.ClassLoader.java// Returns the invoker's class loader, or null if none.static ClassLoader getCallerClassLoader() {        // 获取调用类(caller)的类型        Class caller = Reflection.getCallerClass(3);        // This can be null if the VM is requesting it        if (caller == null) {            returnnull;        }        // 调用java.lang.Class中本地方法获取加载该调用类(caller)的ClassLoader        return caller.getClassLoader0();}//java.lang.Class.java//虚拟机本地实现,获取当前类的类加载器,前面介绍的Class的getClassLoader()也使用此方法native ClassLoader getClassLoader0();

在编写自定义类加载器时,如果没有设定父加载器,那么父加载器是?
我们编写自定义的类加载器直接或者间接继承自java.lang.ClassLoader抽象类,对应的无参默认构造函数实现如下:
//摘自java.lang.ClassLoader.javaprotected ClassLoader() {      SecurityManager security = System.getSecurityManager();if (security != null) {      security.checkCreateClassLoader();}      this.parent = getSystemClassLoader();      initialized = true;}我们再来看一下对应的getSystemClassLoader()方法的实现:privatestaticsynchronizedvoid initSystemClassLoader() {//...sun.misc.Launcher l = sun.misc.Launcher.getLauncher();scl = l.getClassLoader();//...}我们可以写简单的测试代码来测试一下:System.out.println(sun.misc.Launcher.getLauncher().getClassLoader());本机对应输出如下:sun.misc.Launcher$AppClassLoader@197d257
所以,我们现在可以相信当自定义类加载器没有指定父类加载器的情况下,默认的父类加载器即为系统类加载器。同时,我们可以得出如下结论:
即时用户自定义类加载器不指定父类加载器,那么,同样可以加载如下三个地方的类:
1. <Java_Runtime_Home>/lib下的类
2. < Java_Runtime_Home >/lib/ext下或者由系统变量java.ext.dir指定位置中的类
3. 当前工程类路径下或者由系统变量java.class.path指定位置中的类

类加载器的分类?
类加载器在其应用场景的不同又可以分为如下类加载器:
 1. 系统 ClassLoader
 2. 调用者 ClassLoader
 3. 线程上下文ClassLoader
这些类加载器主要是用于动态加载资源,也可以解决架包的重复问题.
调用者类加载器是指当前所在的类装载时所使用的ClassLoader,它可能是SystemClassLoader, 也可能是一个自定义的ClassLoader.可以通过getClass().getClassLoader()来得到Caller ClassLoader.例如,存在类A,是被AClassLoader所加载,A.class.getClassloader()为AClassLoader的实例,它就是A.class的Caller Classloader.
如果在A类中new一个B类,那么B类的类加载器就一定是AClassLoader吗。答案是错的。因为new一个对象,loadClass(B.class)可能在其父ClassLoader中就已经完成.
决定一个类的类加载器是defineClass,而判断两个类是否为同一对象的标准里面有一条是类加载器必须为相同.
现在有一个问题,如何使用指定的ClassLoader去完成类和资源的加载呢,或者说,当需要去实例化一个调用者ClassLoader和它的父ClassLoader都不能加载的类时,怎么办.
一个典型的一例子是Jaxp,当使用xerces的Sax实现时,我们首先需要通过rt.jar中的java.xml.parsers.SaxparserFactory.getinstance()得到xeceImpl.jar中的org.apache.xerces.jaxp.SAXParserFactory.Impl的实例,由于Jaxp的框架接口的类位于Java_hom/lib/rt.jar中,由bootStrap ClassLoader装载,处于ClassLoader层次结构中的最顶层,而xecesImpl.jar由低怪的ClassLoader装载,也就是说SaxParserFactoryImpl是在SaxParserFactory中实例化的,如前所述,使用SaxParserFactory的CallerClassLoader(boot)是完成不了这个任务的.这里我们需要理解下线程上下文ClassLoader.

线程上下文ClassLoader. 每一个线程都有一个关联的上下文ClassLoader.如果使用new Thread()方式生成新的线程,新线程将继承其父线程的上下文ClassLoader.如果程序对线程上下文ClassLoader没有任何改动的话,程序的所有线程将都使用System ClassLoader作为上下文ClassLoader.当使用Thread.currentThread().setContextClassLoader(classLoader)时,线程上下文ClassLoader就变成了指定的ClassLoader了。此时,在本线程的任意一处地方,调用Thread.currentThread().getContextClassLoader().都可以得到前面设置的ClassLoader.
一个线程来了,第一件事情便是设置ClassLoader来设置线程上下文类加载器,模块内部都使用线程上下文类加载器[比如某一接口处于AClassLoader,我设置AClassLoader为线程上下文类加载器,那么我通过getContextClassLoader就可以得到A类的类加载器,以后使用A类的类加载器,这样就可以统一调用了]
(有人可能会问了,我总不能每加载一个类,都使用上下文线程去加载吧,我笑了,其实这大可不必,只要你的类是你私有的[在当前类加载器父级加载器未加载过],就不需要重新加载)
例如:有时这种模式并不能总是奏效。这通常发生在JVM核心代码必须动态加载由应用程序动态提供的资源时。拿JNDI为例,它的核心是由JRE核心类(rt.jar)实现的。但这些核心JNDI类必须能加载由第三方厂商提供的JNDI实现。这种情况下调用父类加载器(原初类加载器)来加载只有其子类加载器可见的类,这种代理机制就会失效[双亲委托机制]。 <span style="font-family: Helvetica, Tahoma, Arial, sans-serif; font-size: 14px; line-height: 25px;">解决办法就是让核心JNDI类使用线程上下文类加载器,从而有效的打通类加载器层次结构,逆着代理机制的方向使用类加载器。</span>

深入分析Java ClassLoader原理:http://blog.csdn.net/xyang81/article/details/7292380
如何判定两个class是相同的呢?

深入研究Java类加载机制:http://lavasoft.blog.51cto.com/62575/184547
类加载器各自搜索的目录

转载自:http://blog.csdn.net/ns_code/article/details/17881581
参考:http://computerdragon.blog.51cto.com/6235984/1223354
0 0
原创粉丝点击