大端模式与小端模式

来源:互联网 发布:linux自定义日志级别 编辑:程序博客网 时间:2024/05/17 05:51
原文地址:大端模式与小端模式作者:吃鱼的小花猫

一、概念及详解
  在各种体系的计算机中通常采用的字节存储机制主要有两种:big-endian和little-endian,即大端模式和小端模式。


  先回顾两个关键词,MSB和LSB:


  MSB:Most SignificantBit ------- 最高有效位
  LSB:LeastSignificant Bit ------- 最低有效位


  大端模式(big-edian)
  big-endian:MSB存放在最低端的地址上。


  举例,双字节数0x1234以big-endian的方式存在起始地址0x00002000中:


       | data |<-- address
       | 0x12 |<-- 0x00002000
       | 0x34 |<-- 0x00002001


  在Big-Endian中,对于bit序列中的序号编排方式如下(以双字节数0x8B8A为例):


       bit | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
       ------MSB----------------------------------LSB
       val | 1 0 0 0 1 0 1 1 | 1 0 0 0 1 0 1 0 |
       +--------------------------------------------+
       = 0x8 B 8 A


  小端模式(little-endian)
  little-endian:LSB存放在最低端的地址上。


  举例,双字节数0x1234以little-endian的方式存在起始地址0x00002000中:


       | data |<-- address
       | 0x34 |<-- 0x00002000
       | 0x12 |<-- 0x00002001


  在Little-Endian中,对于bit序列中的序号编排和Big-Endian刚好相反,其方式如下(以双字节数0x8B8A为例):


       bit | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0
       ------MSB-----------------------------------LSB
       val | 1 0 0 0 1 0 1 1 | 1 0 0 0 1 0 1 0 |
       +---------------------------------------------+
       = 0x8 B 8 A


二、数组在大端小端情况下的存储:
  以unsigned intvalue = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned charbuf[4]来表示value:


  Big-Endian:低地址存放高位,如下:


      高地址
       ---------------
       buf[3] (0x78) -- 低位
       buf[2] (0x56)
       buf[1] (0x34)
       buf[0] (0x12) -- 高位
       ---------------
       低地址


  Little-Endian:低地址存放低位,如下:
       高地址
       ---------------
       buf[3] (0x12) -- 高位
       buf[2] (0x34)
       buf[1] (0x56)
       buf[0] (0x78) -- 低位
       --------------
       低地址

 

三、大端小端转换方法:
  Big-Endian转换成Little-Endian如下:


    #defineBigtoLittle16(A)  ((((uint16)(A)& 0xff00) >> 8) |
                                 (((uint16)(A)& 0x00ff) <<8))


    #defineBigtoLittle32(A)  ((((uint32)(A)& 0xff000000) >> 24)|
                                  (((uint32)(A)& 0x00ff0000) >> 8) |
                                  (((uint32)(A)& 0x0000ff00) << 8) |
                                  (((uint32)(A)& 0x000000ff) <<24))

四、大端小端检测方法:
  如何检查处理器是big-endian还是little-endian?


  联合体union的存放顺序是所有成员都从低地址开始存放,利用该特性就可以轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。

     intcheckCPUendian()
    {
        union
        {
             unsigned int a;
             unsigned char b;
        }c;
        c.a = 1;
        return (c.b == 1);
    }
    

 

网络字节顺序


1、字节内的比特位不受这种顺序的影响
   比如一个字节 1000 0000 (或表示为十六进制 80H)不管是什么顺序其内存中的表示法都是这样。


2、大于1个字节的数据类型才有字节顺序问题


   比如 ByteA,这个变量只有一个字节的长度,所以根据上一条没有字节顺序问题。所以字节顺序是“字节之间的相对顺序”的意思。


3、大于1个字节的数据类型的字节顺序有两种


   比如 short B,这是一个两字节的数据类型,这时就有字节之间的相对顺序问题了。
   网络字节顺序是“所见即所得”的顺序。而Intel类型的CPU的字节顺序与此相反。
   比如上面的 shortB=0102H(十六进制,每两位表示一个字节的宽度)。所见到的是“0102”,按一般数学常识,数轴从左到右的方向增加,即内存地址从左到右增加的话,在内存中这个short B的字节顺序是:
      01 02
   这就是网络字节顺序。所见到的顺序和在内存中的顺序是一致的!


   而相反的字节顺序就不同了,其在内存中的顺序为:02 01
   假设通过抓包得到网络数据的两个字节流为:01 02
   如果这表示两个 Byte类型的变量,那么自然不需要考虑字节顺序的问题。
   如果这表示一个 short变量,那么就需要考虑字节顺序问题。根据网络字节顺序“所见即所得”的规则,这个变量的值就是:0102


   假设本地主机是Intel类型的,那么要表示这个变量,有点麻烦:
   定义变量 short X,
   字节流地址为:pt,按顺序读取内存是为
   x=*((short*)pt);
   那么X的内存顺序当然是 01 02
   按非“所见即所得”的规则,这个内存顺序和看到的一样显然是不对的,所以要把这两个字节的位置调换。
   调换的方法可以自己定义,但用已经有的API还是更为方便。

 

网络字节顺序与主机字节顺序NBO与HBO

 

   网络字节顺序NBO(NetworkByte Order):按从高到低的顺序存储,在网络上使用统一的网络字节顺序,可以避免兼容性问题。

   主机字节顺序(HBO,HostByte Order):不同的机器HBO不相同,与CPU设计有关计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。

 

   Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换。

 

相关网络函数

 

htonl()


简述:
   将主机的无符号长整形数转换成网络字节顺序。
   #include <winsock.h>
   u_long PASCAL FAR htonl( u_long hostlong);
   hostlong:主机字节顺序表达的32位数。
注释:
   本函数将一个32位数从主机字节顺序转换成网络字节顺序。
返回值:
   htonl()返回一个网络字节顺序的值。

 

inet_ntoa()


简述:
将网络地址转换成“.”点隔的字符串格式。
#include<winsock.h>
char FAR* PASCAL FARinet_ntoa( struct in_addr in);
in:一个表示Internet主机地址的结构。


注释:
本函数将一个用in参数所表示的Internet地址结构转换成以“.”间隔的诸如“a.b.c.d”的字符串形式。请注意inet_ntoa()返回的字符串存放在WINDOWS套接口实现所分配的内存中。应用程序不应假设该内存是如何分配的。在同一个线程的下一个WINDOWS套接口调用前,数据将保证是有效。
返回值:
若无错误发生,inet_ntoa()返回一个字符指针。否则的话,返回NULL。其中的数据应在下一个WINDOWS套接口调用前复制出来。

 

网络中传输的数据有的和本地字节存储顺序一致,而有的则截然不同,为了数据的一致性,就要把本地的数据转换成网络上使用的格式,然后发送出去,接收的时候也是一样的,经过转换然后才去使用这些数据,基本的库函数中提供了这样的可以进行字节转换的函数,如和htons()htonl() ntohs() ntohl(),这里n表示network,h表示host,htons()htonl()用于本地字节向网络字节转换的场合,s表示short,即对2字节操作,l表示long即对4字节操作。同样ntohs()ntohl()用于网络字节向本地格式转换的场合。

 

 

inet_ntoa()将网络字节序地址转换成“.”点隔的字符串格式
inet_addr()将“.”点隔字符串地址转换成网络字节序地址

htonl()将主机字节序转换为网络字节序 long
ntohl()将网络字节序转换为主机字节序 long

htons()将主机字节序转换为网络字节序 short
ntohs()将网络字节序转换为主机字节序 short

 

intelcpu的主机数据是小端存储模式
网络传输是大端存储模式

小端存储模式0x1234H 34H存在低地址,12H存在高地址
大端存储模式0x1234H 34H存在高地址,12H存在低地址

0 0