Android debuggerd 源码分析

来源:互联网 发布:高清直播软件 编辑:程序博客网 时间:2024/06/04 21:16

debuggerd 简介

Android系统自带一个实用的程序异常退出的诊断daemon debuggerd。此进程可以侦测到程序崩溃,并将崩溃时的进程状态信息输出到文件和串口中,以供开发人员分析调试使用。Debuggerd的数据被保存在/data/tombstone/目录下,共可保存10个文件,当超过10个时,会覆盖重写最早生产的文件。串口中,则直接用DEBUG的tag,输出logcat信息。 Linux kernel有自己的一套signal机制,在应用程序崩溃时,通常系统内核都会发送signal到出问题的进程,以通知进程出现什么异常,这些进程可以捕获这些signal并对其做相应的处理。通常对于程序异常信号的处理,就是退出。Android在此机制上实现了一个更实用的功能:拦截这些信号,dump进程信息以供调试。

debuggerd的运行原理

debuggerd创建一个名为 “Android:debuggerd”的socket,作为server端等待其他client端进程的连接,接收client端进程发送来的tid和action信息将由tid指定的那个进程的运行信息,按照由action指定的动作dump到文件或者控制台中可以作为debuggerd的client端的进程主要有几种:

1.       异常的C/C++程序

这种程序由bionic的linker安装异常信号的处理函数,当程序产生异常信号时,进入信号处理函数,与debuggerd建立。

2.       debuggerd程序

debuggerd可以在控制台中以命令debuggerd -b [<tid>]启动 ,然后与debuggerd daemon建立连接。这样debuggerd可以在不中断进程执行的情况下dump由tid指定的进程的信息。

3.       dumpstate

控制台中运行命令dumpstate,并指定必要的参数,命令中会调用dump_backtrace_to_file与debuggerd交互。

debuggerd的使用方法

产生异常信号的C/C++程序与debuggerd建立连接后,debuggerd将进程信息dump到tombstone_XX文件中保存到/data/tombstone/文件夹下。可通过查看tombstone_XX分析异常进程的堆栈信息。

在控制台中以命令debuggerd -b [<tid>]启动。如果加上-b参数,则由tid指定的进程的信息将dump到控制台上,否则dump到tombstone文件中。控制台中运行命令callstack/dumpstate,进程信息会写入这两个命令指定的文件中。

应用程序异常处理过程

应用程序入口属于bionic实现的一部分,则对所有android的程序有效。在应用程序入口地址__start后,__linker_init中调用debugger_init()函数来注册异常信号处理handler,以实现拦截系统异常的几个singal:SIGILL,SIGABRT, SIGBUS, SIGFPE,SIGSEGV和SIGPIPE:

linker/arch/arm/begin.S

start:        mov     r0, sp        mov     r1, #0        bl      __linker_init

bionic\linker\ Linker.cpp

extern "C" Elf32_Addr __linker_init(void* raw_args) {  …  Elf32_Addr start_address = __linker_init_post_relocation(args, linker_addr);  set_soinfo_pool_protection(PROT_READ);  // Return the address that the calling assembly stub should jump to.  return start_address;}

 

static Elf32_Addr __linker_init_post_relocation(KernelArgumentBlock& args, Elf32_Addr linker_base) {     ...    debuggerd_init();     ...}

bionic\linker\Debugger.c

void debugger_init(){    struct sigaction act;    memset(&act, 0, sizeof(act));    act.sa_sigaction = debugger_signal_handler;    act.sa_flags = SA_RESTART | SA_SIGINFO;    sigemptyset(&act.sa_mask);    sigaction(SIGILL, &act, NULL);    sigaction(SIGABRT, &act, NULL);    sigaction(SIGBUS, &act, NULL);    sigaction(SIGFPE, &act, NULL);    sigaction(SIGSEGV, &act, NULL);    sigaction(SIGSTKFLT, &act, NULL);    sigaction(SIGPIPE, &act, NULL);}

bionic库中的链接器会对以下七种信号设置Handler(debugger_signal_handler):

  1. SIGILL(非法指令异常)
  2. SIGABRT(abort退出异常)
  3. SIGBUS(硬件访问异常)
  4. SIGFPE(浮点运算异常)
  5. SIGSEGV(内存访问异常)
  6. SIGSTKFLT(协处理器栈异常)
  7. SIGPIPE(管道异常)

debugger_init中act.sa_flags = SA_RESTART | SA_SIGINFO的涵义:

1)      SA_RESTART

如果指定该参数,表示若信号中断了进程的某个系统调用,则系统自动启动该系统调用。如果不指定该参数,则被中断的系统调用返回失败,错误码为EINTR。这个标志位只要用于处理慢系统调用(可能会被阻塞的系统调用)。比如调用write系统调用写某个设备被阻塞,这时进程捕获某个信号且进入相应信号处理函数返回时,该系统调用可能要返回ENINTR错误。指定这个参数后,系统调用会重启,与RETRY_ON_EINTR宏配合使用则可以保证写操作的完成

2)      SA_SIGINFO

如果指定该参数,表示信号附带的参数(siginfo_t结构体)可以被传递到信号处理函数中。

链接到bionic库上的C/C++程序崩溃时,内核会发送相应的signal,进程收到异常信号后,会转入debugger_signal_handler函数中进行处理。

void debugger_signal_handler(int n, siginfo_t* info, void* unused){    char msgbuf[128];    unsigned tid;    int s;    logSignalSummary(n, info);     tid = gettid();//"android:debuggerd"    s = socket_abstract_client(DEBUGGER_SOCKET_NAME, SOCK_STREAM);     if (s >= 0) {        /* debugger knows our pid from the credentials on the         * local socket but we need to tell it our tid.  It         * is paranoid and will verify that we are giving a tid         * that's actually in our process         */        int  ret;        debugger_msg_t msg;        msg.action = DEBUGGER_ACTION_CRASH;        msg.tid = tid;        RETRY_ON_EINTR(ret, write(s, &msg, sizeof(msg)));        if (ret == sizeof(msg)) {            /* if the write failed, there is no point to read on             * the file descriptor. */            RETRY_ON_EINTR(ret, read(s, &tid, 1));            int savedErrno = errno;            notify_gdb_of_libraries();            errno = savedErrno;        }         if (ret < 0) {            /* read or write failed -- broken connection? */            format_buffer(msgbuf, sizeof(msgbuf),                "Failed while talking to debuggerd: %s", strerror(errno));            __libc_android_log_write(ANDROID_LOG_FATAL, "libc", msgbuf);        }         close(s);    } else {        /* socket failed; maybe process ran out of fds */        format_buffer(msgbuf, sizeof(msgbuf),            "Unable to open connection to debuggerd: %s", strerror(errno));        __libc_android_log_write(ANDROID_LOG_FATAL, "libc", msgbuf);    }     /* remove our net so we fault for real when we return */    signal(n, SIG_DFL);     /*     * These signals are not re-thrown when we resume.  This means that     * crashing due to (say) SIGPIPE doesn't work the way you'd expect it     * to.  We work around this by throwing them manually.  We don't want     * to do this for *all* signals because it'll screw up the address for     * faults like SIGSEGV.     */    switch (n) {        case SIGABRT:        case SIGFPE:        case SIGPIPE:        case SIGSTKFLT:            (void) tgkill(getpid(), gettid(), n);            break;        default:    // SIGILL, SIGBUS, SIGSEGV            break;    }}

debugger_signal_handler函数处理流程:

1) 调用logSignalSummary将signal信息写入文件;

static void logSignalSummary(int signum, const siginfo_t* info){    char buffer[128];    char threadname[MAX_TASK_NAME_LEN + 1]; // one more for termination    char* signame;    switch (signum) {        case SIGILL:    signame = "SIGILL";     break;        case SIGABRT:   signame = "SIGABRT";    break;        case SIGBUS:    signame = "SIGBUS";     break;        case SIGFPE:    signame = "SIGFPE";     break;        case SIGSEGV:   signame = "SIGSEGV";    break;        case SIGSTKFLT: signame = "SIGSTKFLT";  break;        case SIGPIPE:   signame = "SIGPIPE";    break;        default:        signame = "???";        break;    }    if (prctl(PR_GET_NAME, (unsigned long)threadname, 0, 0, 0) != 0) {        strcpy(threadname, "<name unknown>");    } else {        // short names are null terminated by prctl, but the manpage        // implies that 16 byte names are not.        threadname[MAX_TASK_NAME_LEN] = 0;    }    format_buffer(buffer, sizeof(buffer),        "Fatal signal %d (%s) at 0x%08x (code=%d), thread %d (%s)",        signum, signame, info->si_addr, info->si_code, gettid(), threadname);    __libc_android_log_write(ANDROID_LOG_FATAL, "libc", buffer);}

获取异常信号的名字和thread名字,并格式化字符串,调用函数__libc_android_log_write函数写入”/dev/log/main”中。

2) 调用socket_abstract_client函数与debuggerd建立socket连接;

s = socket_abstract_client(DEBUGGER_SOCKET_NAME, SOCK_STREAM);

3) 如果连接建立成功,则设置结构体debugger_msg_t,并发送给debuggerd;

msg.action = DEBUGGER_ACTION_CRASH;//告诉debuggerd采取何种行msg.tid = tid;//线程号RETRY_ON_EINTR(ret, write(s, &msg, sizeof(msg)));

4) 等待debuggerd的回复,阻塞在下面的调用中,收到回复后接着执行下面的流程;

RETRY_ON_EINTR(ret, read(s, &tid, 1));

5)  重新设置信号处理函数为SIG_DFL,即采取默认的动作;

signal(n, SIG_DFL);

6)  重新发送信号,进程从当前信号处理函数返回后,会处理这个信号,进行默认的信号处理动作,即中断进程。

debuggerd的源码分析

1.       在init进程中以deamon的方式启动,在init.rc中

service debuggerd /system/bin/debuggerd class main

以这种方式启动的话,进入main函数后,将调用do_server函数,作为server端为其他进程提供dump进程信息的服务。

2.       直接运行system/bin/debuggerd可执行文件,需要指定参数,用法为:

debuggerd -b [<tid>] //参数-b表示在控制台中输出backtrace

以这种方式启动的话,进入main函数后,将调用do_explicit_dump函数与debuggerd daemon通信,将指定进程的信息dump到文件或控制台。

服务启动方式

int main(int argc, char** argv) {    if (argc == 1) {        return do_server();    }}

当启动debuggerd进程传递的参数个数为1时,此时启动的debuggerd将作为一个后台服务进程,专门接收应用程序异常退出消息而产生tombstone。

static int do_server() {    int s;    struct sigaction act;    int logsocket = -1;     /*     * debuggerd crashes can't be reported to debuggerd.  Reset all of the     * crash handlers.     */    signal(SIGILL, SIG_DFL);    signal(SIGABRT, SIG_DFL);    signal(SIGBUS, SIG_DFL);    signal(SIGFPE, SIG_DFL);    signal(SIGSEGV, SIG_DFL);    signal(SIGPIPE, SIG_IGN);    signal(SIGSTKFLT, SIG_DFL);     logsocket = socket_local_client("logd",            ANDROID_SOCKET_NAMESPACE_ABSTRACT, SOCK_DGRAM);    if(logsocket < 0) {        logsocket = -1;    } else {        fcntl(logsocket, F_SETFD, FD_CLOEXEC);    }     act.sa_handler = SIG_DFL;    sigemptyset(&act.sa_mask);    sigaddset(&act.sa_mask,SIGCHLD);    act.sa_flags = SA_NOCLDWAIT;    sigaction(SIGCHLD, &act, 0);     s = socket_local_server(DEBUGGER_SOCKET_NAME,            ANDROID_SOCKET_NAMESPACE_ABSTRACT, SOCK_STREAM);    if(s < 0) return 1;    fcntl(s, F_SETFD, FD_CLOEXEC);     LOG("debuggerd: " __DATE__ " " __TIME__ "\n");     //check corefile limit.    (void)check_corefile_limit();     for(;;) {        struct sockaddr addr;        socklen_t alen;        int fd;        alen = sizeof(addr);        XLOG("waiting for connection\n");        fd = accept(s, &addr, &alen);        if(fd < 0) {            XLOG("accept failed: %s\n", strerror(errno));            continue;        }         fcntl(fd, F_SETFD, FD_CLOEXEC);         handle_request(fd);    }    return 0;}

1.       忽略debuggerd自身crash的处理;

2.       建立socket通信的server端;

3.       进入无限循环中,等待并接收客户端进程连接请求,并通过handle_request()函数处理请求;

handle_request

static void handle_request(int fd) {    XLOG("handle_request(%d)\n", fd);     debugger_request_t request;    int status = read_request(fd, &request);    if (!status) {        XLOG("BOOM: pid=%d uid=%d gid=%d tid=%d\n",            request.pid, request.uid, request.gid, request.tid);         /* At this point, the thread that made the request is blocked in         * a read() call.  If the thread has crashed, then this gives us         * time to PTRACE_ATTACH to it before it has a chance to really fault.         *         * The PTRACE_ATTACH sends a SIGSTOP to the target process, but it         * won't necessarily have stopped by the time ptrace() returns.  (We         * currently assume it does.)  We write to the file descriptor to         * ensure that it can run as soon as we call PTRACE_CONT below.         * See details in bionic/libc/linker/debugger.c, in function         * debugger_signal_handler().         */        if (ptrace(PTRACE_ATTACH, request.tid, 0, 0)) {            LOG("ptrace attach failed: %s\n", strerror(errno));        } else {            bool detach_failed = false;            bool attach_gdb = should_attach_gdb(&request);            if (TEMP_FAILURE_RETRY(write(fd, "\0", 1)) != 1) {                LOG("failed responding to client: %s\n", strerror(errno));            } else {                char* tombstone_path = NULL;                 if (request.action == DEBUGGER_ACTION_CRASH) {                    close(fd);                    fd = -1;                }                 int total_sleep_time_usec = 0;                for (;;) {                    int signal = wait_for_signal(request.tid, &total_sleep_time_usec);                    if (signal < 0) {                        break;                    }                     switch (signal) {                    case SIGSTOP:                        if (request.action == DEBUGGER_ACTION_DUMP_TOMBSTONE) {                            XLOG("stopped -- dumping to tombstone\n");                            tombstone_path = engrave_tombstone(request.pid, request.tid,                                    signal, true, true, &detach_failed,                                    &total_sleep_time_usec);                        } else if (request.action == DEBUGGER_ACTION_DUMP_BACKTRACE) {                            XLOG("stopped -- dumping to fd\n");                            dump_backtrace(fd, request.pid, request.tid, &detach_failed,                                    &total_sleep_time_usec);                        } else {                            XLOG("stopped -- continuing\n");                            status = ptrace(PTRACE_CONT, request.tid, 0, 0);                            if (status) {                                LOG("ptrace continue failed: %s\n", strerror(errno));                            }                            continue; /* loop again */                        }                        break;                     case SIGILL:                    case SIGABRT:                    case SIGBUS:                    case SIGFPE:                    case SIGSEGV:                    case SIGSTKFLT: {                        XLOG("stopped -- fatal signal\n");                        /*                         * Send a SIGSTOP to the process to make all of                         * the non-signaled threads stop moving.  Without                         * this we get a lot of "ptrace detach failed:                         * No such process".                         */                        kill(request.pid, SIGSTOP);                        /* don't dump sibling threads when attaching to GDB because it                         * makes the process less reliable, apparently... */                        tombstone_path = engrave_tombstone(request.pid, request.tid,                                signal, !attach_gdb, false, &detach_failed,                                &total_sleep_time_usec);                        break;                    }                     case SIGPIPE:                        LOG("socket-client process stopped due to SIGPIPE! \n");                        break;                     default:                        XLOG("stopped -- unexpected signal\n");                        LOG("process stopped due to unexpected signal %d\n", signal);                        break;                    }                    break;                }                 if (request.action == DEBUGGER_ACTION_DUMP_TOMBSTONE) {                    if (tombstone_path) {                        write(fd, tombstone_path, strlen(tombstone_path));                    }                    close(fd);                    fd = -1;                }                free(tombstone_path);            }             XLOG("detaching\n");            if (attach_gdb) {                /* stop the process so we can debug */                kill(request.pid, SIGSTOP);                 /* detach so we can attach gdbserver */                if (ptrace(PTRACE_DETACH, request.tid, 0, 0)) {                    LOG("ptrace detach from %d failed: %s\n", request.tid, strerror(errno));                    detach_failed = true;                }                 /*                 * if debug.db.uid is set, its value indicates if we should wait                 * for user action for the crashing process.                 * in this case, we log a message and turn the debug LED on                 * waiting for a gdb connection (for instance)                 */                wait_for_user_action(request.pid);            } else {                /* just detach */                if (ptrace(PTRACE_DETACH, request.tid, 0, 0)) {                    LOG("ptrace detach from %d failed: %s\n", request.tid, strerror(errno));                    detach_failed = true;                }            }             /* resume stopped process (so it can crash in peace). */            kill(request.pid, SIGCONT);             /* If we didn't successfully detach, we're still the parent, and the             * actual parent won't receive a death notification via wait(2).  At this point             * there's not much we can do about that. */            if (detach_failed) {                LOG("debuggerd committing suicide to free the zombie!\n");                kill(getpid(), SIGKILL);            }        }     }    if (fd >= 0) {        close(fd);    }}

 1)  调用read_request函数读取client端进程发送来的数据:

static int read_request(int fd, debugger_request_t* out_request) {    struct ucred cr;    int len = sizeof(cr);    int status = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &cr, &len);    if (status != 0) {        LOG("cannot get credentials\n");        return -1;    }    XLOG("reading tid\n");    fcntl(fd, F_SETFL, O_NONBLOCK);    struct pollfd pollfds[1];    pollfds[0].fd = fd;    pollfds[0].events = POLLIN;    pollfds[0].revents = 0;    status = TEMP_FAILURE_RETRY(poll(pollfds, 1, 3000));    if (status != 1) {        LOG("timed out reading tid\n");        return -1;    }    debugger_msg_t msg;    status = TEMP_FAILURE_RETRY(read(fd, &msg, sizeof(msg)));    if (status < 0) {        LOG("read failure? %s\n", strerror(errno));        return -1;    }    if (status != sizeof(msg)) {        LOG("invalid crash request of size %d\n", status);        return -1;    }    out_request->action = msg.action;    out_request->tid = msg.tid;    out_request->pid = cr.pid;    out_request->uid = cr.uid;    out_request->gid = cr.gid;    if (msg.action == DEBUGGER_ACTION_CRASH) {        /* Ensure that the tid reported by the crashing process is valid. */        char buf[64];        struct stat s;        snprintf(buf, sizeof buf, "/proc/%d/task/%d", out_request->pid, out_request->tid);        if(stat(buf, &s)) {            LOG("tid %d does not exist in pid %d. ignoring debug request\n",                    out_request->tid, out_request->pid);            return -1;        }    } else if (cr.uid == 0            || (cr.uid == AID_SYSTEM && msg.action == DEBUGGER_ACTION_DUMP_BACKTRACE)) {        /* Only root or system can ask us to attach to any process and dump it explicitly.         * However, system is only allowed to collect backtraces but cannot dump tombstones. */        status = get_process_info(out_request->tid, &out_request->pid,                &out_request->uid, &out_request->gid);        if (status < 0) {            LOG("tid %d does not exist. ignoring explicit dump request\n",                    out_request->tid);            return -1;        }    } else {        /* No one else is not allowed to dump arbitrary processes. */        return -1;    }    return 0;}

☞  从socket中读取client端进程的pid uid gid

getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &cr, &len);

☞  轮询socket句柄

struct pollfd pollfds[1];pollfds[0].fd = fd;pollfds[0].events = POLLIN;pollfds[0].revents = 0;status = TEMP_FAILURE_RETRY(poll(pollfds, 1, 3000));

☞  从socket上读取debugger_msg_t结构体

debugger_msg_t msg;status = TEMP_FAILURE_RETRY(read(fd, &msg, sizeof(msg)));if (status < 0) {LOG("read failure? %s\n", strerror(errno));return -1;}if (status != sizeof(msg)) {LOG("invalid crash request of size %d\n", status);return -1;}out_request->action = msg.action;out_request->tid = msg.tid;out_request->pid = cr.pid;out_request->uid = cr.uid;out_request->gid = cr.gid;

☞ 如果debugger_msg_t中设置的action为DEBUGGER_ACTION_CRASH,说明是crash的C/C++进程发来的请求,则判断传进来的tid是否有效。

if (msg.action == DEBUGGER_ACTION_CRASH) {/* Ensure that the tid reported by the crashing process is valid. */char buf[64];struct stat s;snprintf(buf, sizeof buf, "/proc/%d/task/%d", out_request->pid, out_request->tid);if(stat(buf, &s)) {LOG("tid %d does not exist in pid %d. ignoring debug request\n",out_request->tid, out_request->pid);return -1;}}

☞   如果debugger_msg_t中设置的action为DEBUGGER_ACTION_DUMP_BACKTRACE说明是其他方式(debuggerd)发来的请求,则要求必须为root权限或者system权限,然后再判断tid是否有效。

 

 2)  从read_request返回后,调用ptrace函数attach到tid指定的进程,此时debuggerd将变为被attache进程的父进程,然后ptrace函数会向子进程发送SIGSTOP信号将子进程停下来。此时,父进程有机会检查子进程核心image和寄存器的值。

ptrace(PTRACE_ATTACH, request.tid, 0, 0)

 3)  调用下面的语句给client端子进程回复消息,使clinet端的进程能从read调用中返回。

TEMP_FAILURE_RETRY(write(fd, "\0", 1)

 4)  在for循环中等待子进程停止。

int signal = wait_for_signal(request.tid, &total_sleep_time_usec);

 5)  子进程根据收到的不同信号、不同的action进行不同的处理

switch (signal) {case SIGSTOP:if (request.action == DEBUGGER_ACTION_DUMP_TOMBSTONE) {XLOG("stopped -- dumping to tombstone\n");tombstone_path = engrave_tombstone(request.pid, request.tid,signal, true, true, &detach_failed,&total_sleep_time_usec);} else if (request.action == DEBUGGER_ACTION_DUMP_BACKTRACE) {XLOG("stopped -- dumping to fd\n");dump_backtrace(fd, request.pid, request.tid, &detach_failed,&total_sleep_time_usec);} else {XLOG("stopped -- continuing\n");status = ptrace(PTRACE_CONT, request.tid, 0, 0);if (status) {LOG("ptrace continue failed: %s\n", strerror(errno));}continue; /* loop again */}break;case SIGILL:case SIGABRT:case SIGBUS:case SIGFPE:case SIGSEGV:case SIGSTKFLT: {XLOG("stopped -- fatal signal\n");kill(request.pid, SIGSTOP);tombstone_path = engrave_tombstone(request.pid, request.tid,signal, !attach_gdb, false, &detach_failed,&total_sleep_time_usec);break;}case SIGPIPE:LOG("socket-client process stopped due to SIGPIPE! \n");break;default:XLOG("stopped -- unexpected signal\n");LOG("process stopped due to unexpected signal %d\n", signal);break;}

☞子进程收到SIGSTOP说明进程并没有发生crash,根据action不同将进程信息写入tombstone文件。

☞子进程收到七种异常信号说明是进程发生crash,调用engrave_tombstone直接将dump的信息写到tombstone。

 6)  调用ptrace(PTRACE_DETACH, request.tid, 0, 0)解除对子进程的追踪;

if (attach_gdb) {kill(request.pid, SIGSTOP);if (ptrace(PTRACE_DETACH, request.tid, 0, 0)) {LOG("ptrace detach from %d failed: %s\n", request.tid, strerror(errno));detach_failed = true;}wait_for_user_action(request.pid);} else {if (ptrace(PTRACE_DETACH, request.tid, 0, 0)) {LOG("ptrace detach from %d failed: %s\n", request.tid, strerror(errno));detach_failed = true;}}

如果运行了类似以下指令:adb shell setprop debug.db.uid 10000;则所有uid<10000的进程发生crash的时候attach_gdb为true,将停止crash进程,并调用ptrace(PTRACE_DETACH, request.tid, 0, 0) 解除对crash进程的追踪后,开始等待gdb的连接。

adb forward tcp:5039 tcp:5039

adb shell gdbserver :5039 --attach pid &

用户按下HOME或者VOLUME DOWN按键,可以使进程继续进行,自然crash

attach_gdb为false时,只会解除对子进程的追踪。

 7)  调用kill(request.pid, SIGCONT)恢复被停止的子进程,并让其自然终止;

engrave_tombstone

char* engrave_tombstone(pid_t pid, pid_t tid, int signal,        bool dump_sibling_threads, bool quiet, bool* detach_failed,        int* total_sleep_time_usec) {    mkdir(TOMBSTONE_DIR, 0755);    chown(TOMBSTONE_DIR, AID_SYSTEM, AID_SYSTEM);    //dump maps & check corefile limit .    dump_creash_maps(pid);  //creat maps file    int fd;    char* path = find_and_open_tombstone(&fd);    if (!path) {        *detach_failed = false;        return NULL;    }    log_t log;    log.tfd = fd;    log.quiet = quiet;    *detach_failed = dump_crash(&log, pid, tid, signal, dump_sibling_threads,            total_sleep_time_usec);    close(fd);    return path;}

对于crash的C/C++进程,主要通过这个函数dump进程信息

1.创建”/data/tombstones”文件夹并修改权限

2.调用函数find_and_open_tombstone,tombstone_XX文件最多10个,超过则覆盖最早的

3.调用dump_crash将所有信息dump到tombstone文件:

☞ dump_build_info(log);

☞ dump_thread_info(log, pid, tid, true);

☞ dump_fault_addr(log, tid, signal);

☞ dump_thread(context, log, tid, true, total_sleep_time_usec) dump进程的上下文信息

☞ dump_logs(log, pid, true);

☞ dump_sibling_thread_report(context, log, pid, tid, total_sleep_time_usec);

dump_backtrace

void dump_backtrace(int fd, pid_t pid, pid_t tid, bool* detach_failed,        int* total_sleep_time_usec) {    log_t log;    log.tfd = fd;    log.quiet = true;    ptrace_context_t* context = load_ptrace_context(tid);    dump_process_header(&log, pid);    dump_thread(&log, tid, context, true, detach_failed, total_sleep_time_usec);    char task_path[64];    snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid);    DIR* d = opendir(task_path);    if (d) {        struct dirent debuf;        struct dirent *de;        while (!readdir_r(d, &debuf, &de) && de) {            if (!strcmp(de->d_name, ".") || !strcmp(de->d_name, "..")) {                continue;            }            char* end;            pid_t new_tid = strtoul(de->d_name, &end, 10);            if (*end || new_tid == tid) {                continue;            }            dump_thread(&log, new_tid, context, false, detach_failed, total_sleep_time_usec);        }        closedir(d);    }    dump_process_footer(&log, pid);    free_ptrace_context(context);}

☞  dump_process_header(&log, pid);

☞  dump_thread(&log, tid, context, true, detach_failed, total_sleep_time_usec);

☞ dump_process_footer(&log, pid);      

调试工具方式

int main(int argc, char** argv) {    bool dump_backtrace = false;    bool have_tid = false;    pid_t tid = 0;    for (int i = 1; i < argc; i++) {        if (!strcmp(argv[i], "-b")) {            dump_backtrace = true;        } else if (!have_tid) {            tid = atoi(argv[i]);            have_tid = true;        } else {            usage();            return 1;        }    }    if (!have_tid) {        usage();        return 1;    }    return do_explicit_dump(tid, dump_backtrace);}

通过do_explicit_dump函数dump出指定进程的栈信息等

static int do_explicit_dump(pid_t tid, bool dump_backtrace) {    fprintf(stdout, "Sending request to dump task %d.\n", tid);     if (dump_backtrace) {        fflush(stdout);        if (dump_backtrace_to_file(tid, fileno(stdout)) < 0) {            fputs("Error dumping backtrace.\n", stderr);            return 1;        }    } else {        char tombstone_path[PATH_MAX];        if (dump_tombstone(tid, tombstone_path, sizeof(tombstone_path)) < 0) {            fputs("Error dumping tombstone.\n", stderr);            return 1;        }        fprintf(stderr, "Tombstone written to: %s\n", tombstone_path);    }    return 0;}

☞  dump_backtrace_to_file(tid, fileno(stdout))

☞  dump_tombstone(tid, tombstone_path, sizeof(tombstone_path))

1 0