博弈 个人 见解

来源:互联网 发布:17173数据库 编辑:程序博客网 时间:2024/05/16 15:37

因为周测被虐,做了好久的博弈题,找了好多关于博弈的相关资料,感觉自己,似乎还是动了那么一点点。临睡前,就小小的总结一下,希望以后看到的时候,能够有所感悟吧!!

接下来是正题。

讲到博弈, 其实也就是找规律,但是知道一般的博弈类型可以快速便捷的解决问题。

博弈的类型大致有以下几种:巴什博弈,威佐夫博奕,尼姆博弈。除此之外还有斐波那契博弈,sg模板等

巴什博弈:(摘自百度文库)

巴什博奕(Bash Game):

只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
     显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
     这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。


巴什博弈主要内容是:n%(m+1)是否为零。 要是为零的话,就是先手输,否则,先手赢


威佐夫博奕:(以下关于定义的语句,为了保持说明的完整性·准确性,均摘自网络百度文库,下面就不在说明)

威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
     这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
     可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有如下三条性质:
     1。任何自然数都包含在一个且仅有一个奇异局势中。
     由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 >ak-1 。所以性质1。成立。
     2。任意操作都可将奇异局势变为非奇异局势。
     事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
     3。采用适当的方法,可以将非奇异局势变为奇异局势。
     假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b   - bk个物体,即变为奇异局势;如果 a = ak ,   b < bk ,则同时从两堆中拿走 ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj 即可。
     从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
     那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
     ak =[k(1+√5)/2],bk= ak + k   (k=0,1,2,...,n 方括号表示取整函数)奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。


威佐夫博奕的思想就是那个公式:判断等号两边是否相等a(a是较小的数)==floor((b-a)*((sqrt(5.0)+1)/2)) 

要是相等的话就是先手输,否则先手赢


尼姆博弈:

尼姆博弈基本思想:

       两人从n堆物品中取任意个,先取完者胜。

       即将n堆物品的数量异或,得到的值如果为0,则先手败,反之先手胜。

       如果要求先手在胜的条件下,到奇异局势的方法数,则判断异或的值与每一堆原值异或后(结果应该表示该堆没有参加异或时的异或值)与原值比较大小,

如果小于,则方法数加一。且对应的方法后,该堆的数目应变为异或的值与每一堆原值异或的值。


尼姆博弈的主要内容就是:对每堆的数量进行异或运算


Fibonacci’s Game(斐波那契博弈)
斐波那契博弈模型,大致上是这样的:

有一堆个数为 n 的石子,游戏双方轮流取石子,满足:
1. 先手不能在第一次把所有的石子取完;
2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
约定取走最后一个石子的人为赢家,求必败态。

 

(转)分析:     
 n = 2时输出second;    
 n = 3时也是输出second;
 n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何取,第一个人都能赢,输出first;
 n = 5时,first不可能获胜,因为他取2时,second直接取掉剩下的3个就会获胜,当他取1时,这样就变成了n为4的情形,所以输出的是second;  
 n = 6时,first只要去掉1个,就可以让局势变成n为5的情形,所以输出的是first;     
 n = 7时,first取掉2个,局势变成n为5的情形,故first赢,所以输出的是first;    
 n = 8时,当first取1的时候,局势变为7的情形,第二个人可赢,first取2的时候,局势变成n为6得到情形,也是第二个人赢,取3的时候,second直接取掉剩下的5个,所以n = 8时,输出的是second;   
 …………     
 从上面的分析可以看出,n为2、3、5、8时,这些都是输出second,即必败点,仔细的人会发现这些满足斐波那契数的规律,可以推断13也是一个必败点。     
 借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。n=12时,只要谁能使石子剩下8且此次取子没超过3就能获胜。因此可以把12看成8+4,把8看成一个站,等价与对4进行"气喘操作"。又如13,13=8+5,5本来就是必败态,得出13也是必败态。也就是说,只要是斐波那契数,都是必败点。
所以我们可以利用斐波那契数的公式:fib[i] = fib[i-1] + fib[i-2],只要n是斐波那契数就输出No。

  常用的博弈类型,基本就是这些。以后碰见更多的再来补充。


0 0
原创粉丝点击