DBN C++代码理解

来源:互联网 发布:2017淘宝捉猫猫红包 编辑:程序博客网 时间:2024/06/05 10:55

DBN C++代码理解

上一篇学习了RBM的代码,而DBN是由多个RBM构成的。其训练过程就是,先逐个训练每个RBM,用训练好的权值和偏置初始化一个相应的BP神经网络,再用有标签的数据调优整个网络。下面我们看一下整个DBN的代码。先是几个class的定义。

DBN类定义:

class DBN {public:  int N;  int n_ins;  int *hidden_layer_sizes;  int n_outs;  int n_layers;  HiddenLayer **sigmoid_layers;  RBM **rbm_layers;  LogisticRegression *log_layer;  DBN(int, int, int*, int, int);  ~DBN();  void pretrain(int*, double, int, int);  void finetune(int*, int*, double, int);  void predict(int*, double*);};

HiddenLayer类定义:(顾名思义就是DBN的隐含层结构)

class HiddenLayer {public:  int N;  int n_in;  int n_out;  double **W;  double *b;  HiddenLayer(int, int, int, double**, double*);  ~HiddenLayer();  double output(int*, double*, double);  void sample_h_given_v(int*, int*);};


LogisticRegression类定义:(相应NN的层定义)

class LogisticRegression {public:  int N;  // num of inputs  int n_in;  int n_out;  double **W;  double *b;  LogisticRegression(int, int, int);  ~LogisticRegression();  void train(int*, int*, double);  void softmax(double*);  void predict(int*, double*);};

最后是RBM的类定义:(上一篇已经说过的)

class RBM {public:  int N;  int n_visible;  int n_hidden;  double **W;  double *hbias;  double *vbias;  RBM(int, int, int, double**, double*, double*);  ~RBM();  void contrastive_divergence(int*, double, int);  void sample_h_given_v(int*, double*, int*);  void sample_v_given_h(int*, double*, int*);  double propup(int*, double*, double);  double propdown(int*, int, double);  void gibbs_hvh(int*, double*, int*, double*, int*);  void reconstruct(int*, double*);};

然后就是网络的训练和预测:

#include <iostream>#include <math.h>#include "HiddenLayer.h"#include "RBM.h"#include "LogisticRegression.h"#include "DBN.h"using namespace std;double uniform(double min, double max) {             //在max和min之间随机一个数  return rand() / (RAND_MAX + 1.0) * (max - min) + min;}int binomial(int n, double p) {          //二值化  if(p < 0 || p > 1) return 0;    int c = 0;  double r;    for(int i=0; i<n; i++) {    r = rand() / (RAND_MAX + 1.0);    if (r < p) c++;  }  return c;}double sigmoid(double x) {  return 1.0 / (1.0 + exp(-x));}// DBNDBN::DBN(int size, int n_i, int *hls, int n_o, int n_l) {  int input_size;  //每个RBM输入节点数    N = size;  n_ins = n_i;      //最开始输入节点数  hidden_layer_sizes = hls;      //每个隐含层节点个数  n_outs = n_o;   //最后输出节点数  n_layers = n_l; //网络隐含层数  sigmoid_layers = new HiddenLayer*[n_layers]; //新建n_layers个hiddenlayer指针  rbm_layers = new RBM*[n_layers]; //新建n_layers个rbm指针  // construct multi-layer  for(int i=0; i<n_layers; i++) {    if(i == 0) {      input_size = n_ins; //第一层RBM的输入节点就是最开始的输入节点    } else {      input_size = hidden_layer_sizes[i-1]; //其余的输入节点数就是上一层的节点数    }    // construct sigmoid_layer    sigmoid_layers[i] = new HiddenLayer(N, input_size, hidden_layer_sizes[i], NULL, NULL); //分别建立每个隐含层    // construct rbm_layer    rbm_layers[i] = new RBM(N, input_size, hidden_layer_sizes[i],sigmoid_layers[i]->W, sigmoid_layers[i]->b, NULL);//分别建立每个RBM单元,这里的inputsize是各个RBM的输入节点数  }  // layer for output using LogisticRegression  log_layer = new LogisticRegression(N, hidden_layer_sizes[n_layers-1], n_outs);//建立一个逻辑回归层作为最后输出层}DBN::~DBN() {  delete log_layer;  for(int i=0; i<n_layers; i++) {    delete sigmoid_layers[i];    delete rbm_layers[i];  }  delete[] sigmoid_layers;  delete[] rbm_layers;}void DBN::pretrain(int *input, double lr, int k, int epochs) { //训练过程,input为输入数据,lr为学习率,k是cd-k,epoch为训练轮次  int *layer_input=NULL; //这个指针必须初始化,源代码没有初始化,下面也有同样问题  int prev_layer_input_size;  int *prev_layer_input;  int *train_X = new int[n_ins];  for(int i=0; i<n_layers; i++) {  // 逐层训练    for(int epoch=0; epoch<epochs; epoch++) {  // training epochs      for(int n=0; n<N; n++) { // input x1...xN        // initial input        for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m];        // layer input        for(int l=0; l<=i; l++) {          if(l == 0) {    //0层的输入数据layer_input[j] = train_X[j]            layer_input = new int[n_ins];              for(int j=0; j<n_ins; j++) layer_input[j] = train_X[j];          }   else {      //              if(l == 1) prev_layer_input_size = n_ins;  //第一个隐含层的输入节点数为n_ins            else prev_layer_input_size = hidden_layer_sizes[l-2];  //后面的隐含层输入节点数为其前一个隐含层的节点数, hidden_layer_sizes数组下标从0开始,所以是l-2            prev_layer_input = new int[prev_layer_input_size];  //初始化每层的输入数组            for(int j=0; j<prev_layer_input_size; j++) prev_layer_input[j] = layer_input[j];            delete[] layer_input;            layer_input = new int[hidden_layer_sizes[l-1]];            sigmoid_layers[l-1]->sample_h_given_v(prev_layer_input, layer_input); // 得到其它层的layer input,是HiddenLayer::sample_h_given_v函数,layerinput是二值的            delete[] prev_layer_input;          }        }        rbm_layers[i]->contrastive_divergence(layer_input, lr, k); //训练每个RBM      }    }  }  delete[] train_X;  delete[] layer_input;}void DBN::finetune(int *input, int *label, double lr, int epochs) { //用有标签的数据调优  int *layer_input=NULL;    // int prev_layer_input_size;  int *prev_layer_input;  int *train_X = new int[n_ins];    int *train_Y = new int[n_outs];  for(int epoch=0; epoch<epochs; epoch++) {    for(int n=0; n<N; n++) { // input x1...xN      // initial input      for(int m=0; m<n_ins; m++)  train_X[m] = input[n * n_ins + m];      for(int m=0; m<n_outs; m++) train_Y[m] = label[n * n_outs + m];      // layer input      for(int i=0; i<n_layers; i++) {        if(i == 0) {          prev_layer_input = new int[n_ins];          for(int j=0; j<n_ins; j++) prev_layer_input[j] = train_X[j];        } else {          prev_layer_input = new int[hidden_layer_sizes[i-1]];          for(int j=0; j<hidden_layer_sizes[i-1]; j++) prev_layer_input[j] = layer_input[j];          delete[] layer_input;        }        layer_input = new int[hidden_layer_sizes[i]];        sigmoid_layers[i]->sample_h_given_v(prev_layer_input, layer_input);        delete[] prev_layer_input;      }      log_layer->train(layer_input, train_Y, lr);    }    // lr *= 0.95;  }  delete[] layer_input;  delete[] train_X;  delete[] train_Y;}void DBN::predict(int *x, double *y) {  double *layer_input=NULL;  // int prev_layer_input_size;  double *prev_layer_input;  double linear_output;  prev_layer_input = new double[n_ins];  for(int j=0; j<n_ins; j++) prev_layer_input[j] = x[j];  // layer activation  for(int i=0; i<n_layers; i++) {    layer_input = new double[sigmoid_layers[i]->n_out];    for(int k=0; k<sigmoid_layers[i]->n_out; k++) {      linear_output = 0.0;      for(int j=0; j<sigmoid_layers[i]->n_in; j++) {        linear_output += sigmoid_layers[i]->W[k][j] * prev_layer_input[j];      }      linear_output += sigmoid_layers[i]->b[k];      layer_input[k] = sigmoid(linear_output);    }    delete[] prev_layer_input;    if(i < n_layers-1) {      prev_layer_input = new double[sigmoid_layers[i]->n_out];      for(int j=0; j<sigmoid_layers[i]->n_out; j++) prev_layer_input[j] = layer_input[j];      delete[] layer_input;    }  }    for(int i=0; i<log_layer->n_out; i++) {    y[i] = 0;    for(int j=0; j<log_layer->n_in; j++) {      y[i] += log_layer->W[i][j] * layer_input[j];    }    y[i] += log_layer->b[i];  }    log_layer->softmax(y);  delete[] layer_input;}// HiddenLayerHiddenLayer::HiddenLayer(int size, int in, int out, double **w, double *bp) { //初始一个隐含层W[n_out][n_in],b[n_out]  N = size; //样本数  n_in = in; //输入层的节点个数  n_out = out; //该隐层的节点个数  if(w == NULL) {         W = new double*[n_out];    for(int i=0; i<n_out; i++) W[i] = new double[n_in];    double a = 1.0 / n_in;    for(int i=0; i<n_out; i++) {      for(int j=0; j<n_in; j++) {        W[i][j] = uniform(-a, a);      }    }  } else {    W = w;  }  if(bp == NULL) {    b = new double[n_out];  } else {    b = bp;  }}HiddenLayer::~HiddenLayer() {  for(int i=0; i<n_out; i++) delete W[i];  delete[] W;  delete[] b;}double HiddenLayer::output(int *input, double *w, double b) { //计算隐含层输出  double linear_output = 0.0;  for(int j=0; j<n_in; j++) {    linear_output += w[j] * input[j];  }  linear_output += b;  return sigmoid(linear_output);}void HiddenLayer::sample_h_given_v(int *input, int *sample) {   //对隐层输出二值化  for(int i=0; i<n_out; i++) {    sample[i] = binomial(1, output(input, W[i], b[i]));  }}// RBM RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {  N = size;  n_visible = n_v;  n_hidden = n_h;  if(w == NULL) {    W = new double*[n_hidden];    for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];    double a = 1.0 / n_visible;    for(int i=0; i<n_hidden; i++) {      for(int j=0; j<n_visible; j++) {        W[i][j] = uniform(-a, a);      }    }  } else {    W = w;  }  if(hb == NULL) {    hbias = new double[n_hidden];    for(int i=0; i<n_hidden; i++) hbias[i] = 0;  } else {    hbias = hb;  }  if(vb == NULL) {    vbias = new double[n_visible];    for(int i=0; i<n_visible; i++) vbias[i] = 0;  } else {    vbias = vb;  }}RBM::~RBM() {  // for(int i=0; i<n_hidden; i++) delete[] W[i];  // delete[] W;  // delete[] hbias;  delete[] vbias;}void RBM::contrastive_divergence(int *input, double lr, int k) {  double *ph_mean = new double[n_hidden];  int *ph_sample = new int[n_hidden];  double *nv_means = new double[n_visible];  int *nv_samples = new int[n_visible];  double *nh_means = new double[n_hidden];  int *nh_samples = new int[n_hidden];  /* CD-k */  sample_h_given_v(input, ph_mean, ph_sample);  for(int step=0; step<k; step++) {    if(step == 0) {      gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);    } else {      gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);    }  }  for(int i=0; i<n_hidden; i++) {    for(int j=0; j<n_visible; j++) {      // W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;      W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;    }    hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;  }  for(int i=0; i<n_visible; i++) {    vbias[i] += lr * (input[i] - nv_samples[i]) / N;  }  delete[] ph_mean;  delete[] ph_sample;  delete[] nv_means;  delete[] nv_samples;  delete[] nh_means;  delete[] nh_samples;}void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {  for(int i=0; i<n_hidden; i++) {    mean[i] = propup(v0_sample, W[i], hbias[i]);    sample[i] = binomial(1, mean[i]);  }}void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {  for(int i=0; i<n_visible; i++) {    mean[i] = propdown(h0_sample, i, vbias[i]);    sample[i] = binomial(1, mean[i]);  }}double RBM::propup(int *v, double *w, double b) {  double pre_sigmoid_activation = 0.0;  for(int j=0; j<n_visible; j++) {    pre_sigmoid_activation += w[j] * v[j];  }  pre_sigmoid_activation += b;  return sigmoid(pre_sigmoid_activation);}double RBM::propdown(int *h, int i, double b) {  double pre_sigmoid_activation = 0.0;  for(int j=0; j<n_hidden; j++) {    pre_sigmoid_activation += W[j][i] * h[j];  }  pre_sigmoid_activation += b;  return sigmoid(pre_sigmoid_activation);}void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \                    double *nh_means, int *nh_samples) {  sample_v_given_h(h0_sample, nv_means, nv_samples);  sample_h_given_v(nv_samples, nh_means, nh_samples);}void RBM::reconstruct(int *v, double *reconstructed_v) {  double *h = new double[n_hidden];  double pre_sigmoid_activation;  for(int i=0; i<n_hidden; i++) {    h[i] = propup(v, W[i], hbias[i]);  }  for(int i=0; i<n_visible; i++) {    pre_sigmoid_activation = 0.0;    for(int j=0; j<n_hidden; j++) {      pre_sigmoid_activation += W[j][i] * h[j];    }    pre_sigmoid_activation += vbias[i];    reconstructed_v[i] = sigmoid(pre_sigmoid_activation);  }  delete[] h;}// LogisticRegressionLogisticRegression::LogisticRegression(int size, int in, int out) {  //初始化一个逻辑回归层  N = size;  n_in = in;  n_out = out;  W = new double*[n_out];  for(int i=0; i<n_out; i++) W[i] = new double[n_in];  b = new double[n_out];  for(int i=0; i<n_out; i++) {    for(int j=0; j<n_in; j++) {      W[i][j] = 0;    }    b[i] = 0;  }}LogisticRegression::~LogisticRegression() {  for(int i=0; i<n_out; i++) delete[] W[i];  delete[] W;  delete[] b;}void LogisticRegression::train(int *x, int *y, double lr) {  //就像BP神经网络一样训练  double *p_y_given_x = new double[n_out];  double *dy = new double[n_out];  for(int i=0; i<n_out; i++) {     //正向传播,得到最后输出    p_y_given_x[i] = 0;    for(int j=0; j<n_in; j++) {      p_y_given_x[i] += W[i][j] * x[j];    }    p_y_given_x[i] += b[i];  }  softmax(p_y_given_x);  for(int i=0; i<n_out; i++) {  //反向传播,跟新权值和偏置    dy[i] = y[i] - p_y_given_x[i];    for(int j=0; j<n_in; j++) {      W[i][j] += lr * dy[i] * x[j] / N;    }    b[i] += lr * dy[i] / N;  }    delete[] p_y_given_x;  delete[] dy;}void LogisticRegression::softmax(double *x) {  double max = 0.0;  double sum = 0.0;    for(int i=0; i<n_out; i++) if(max < x[i]) max = x[i];  for(int i=0; i<n_out; i++) {    x[i] = exp(x[i] - max);    sum += x[i];  }   for(int i=0; i<n_out; i++) x[i] /= sum;}void LogisticRegression::predict(int *x, double *y) { //该层网络正向跑一遍  for(int i=0; i<n_out; i++) {    y[i] = 0;    for(int j=0; j<n_in; j++) {      y[i] += W[i][j] * x[j];    }    y[i] += b[i];  }  softmax(y);}void test_dbn() {  srand(0);  double pretrain_lr = 0.1;  int pretraining_epochs = 1000;  int k = 1;  double finetune_lr = 0.1;  int finetune_epochs = 500;  int train_N = 6;  int test_N = 3;  int n_ins = 6;  int n_outs = 2;  int hidden_layer_sizes[] = {3, 3};  int n_layers = sizeof(hidden_layer_sizes) / sizeof(hidden_layer_sizes[0]);  // training data  int train_X[6][6] = {    {1, 1, 1, 0, 0, 0},    {1, 0, 1, 0, 0, 0},    {1, 1, 1, 0, 0, 0},    {0, 0, 1, 1, 1, 0},    {0, 0, 1, 1, 0, 0},    {0, 0, 1, 1, 1, 0}  };  int train_Y[6][2] = {    {1, 0},    {1, 0},    {1, 0},    {0, 1},    {0, 1},    {0, 1}  };    // construct DBN  DBN dbn(train_N, n_ins, hidden_layer_sizes, n_outs, n_layers);  // pretrain  dbn.pretrain(*train_X, pretrain_lr, k, pretraining_epochs);  // finetune  dbn.finetune(*train_X, *train_Y, finetune_lr, finetune_epochs);    // test data  int test_X[3][6] = {    {1, 1, 0, 0, 0, 0},    {0, 0, 0, 1, 1, 0},    {1, 1, 1, 1, 1, 0}  };  double test_Y[3][2];  // test  for(int i=0; i<test_N; i++) {    dbn.predict(test_X[i], test_Y[i]);    for(int j=0; j<n_outs; j++) {      cout << test_Y[i][j] << " ";    }    cout << endl;  }}

int main() {  test_dbn();  return 0;}

运行结果是:

从训练数据来看,这个结果还是比较正确的。




0 0
原创粉丝点击