加密算法

来源:互联网 发布:巨人的陨落英文版 知乎 编辑:程序博客网 时间:2024/06/15 09:59

1、原理介绍

S={P, C, K, E, D}
其中
P——明文空间,表示全体可能出现的明文集合,
C——密文空间,表示全体可能出现的密文集合,
K——密钥空间,密钥是加密算法中的可变参数,
E——加密算法,由一些公式、法则或程序构成,
D——解密算法,它是E的逆。
当给定密钥kÎK时,各符号之间有如下关系:
C = Ek(P), 对明文P加密后得到密文C
P = Dk(C) = Dk(Ek(P)), 对密文C解密后得明文P


2、对称加密算法

对称密钥加密(英语:Symmetric-key algorithm)又称为对称加密、私钥加密、共享密钥加密,是密码学中的一类加密算法。这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单地相互推算的密钥。实务上,这组密钥成为在两个或多个成员间的共同秘密,以便维持专属的通讯联系[1]。与公开密钥加密相比,要求双方取得相同的密钥是对称密钥加密的主要缺点之一。
常见的对称加密算法有DES、3DES、AES、Blowfish、IDEA、RC5、RC6。
对称加密的速度比公钥加密快很多,在很多场合都需要对称加密。


DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

数据加密标准(DES,Data Encryption Standard)是一种使用密钥加密的块密码,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。
DES是一种典型的块密码—一种将固定长度的平文通过一系列复杂的操作变成同样长度的密文的算法。对DES而言,块长度为64位。同时,DES使用密钥来自定义变换过程,因此算法认为只有持有加密所用的密钥的用户才能解密密文。密钥表面上是64位的,然而只有其中的56位被实际用于算法,其余8位可以被用于奇偶校验,并在算法中被丢弃。因此,DES的有效密钥长度为56位,通常称DES的密钥长度为56位。与其它块密码相似,DES自身并不是加密的实用手段,而必须以某种工作模式进行实际操作。FIPS-81确定了DES使用的几种模式[32] 。FIPS-74包括了更多关于DES使用的讨论[33]。


3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

密码学中,3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称。它相当于是对每个数据块应用三次DES加密算法。由于计算机运算能力的增强,原版DES密码的密钥长度变得容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。
普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱[13][14],因此NIST认定它只有80位的安全性[7]。


AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。


3、非对称加密算法

公开密钥加密(英语:public-key cryptography,又译为公开密钥加密),也称为非对称加密(asymmetric cryptography),一种密码学算法类型,在这种密码学方法中,需要一对密钥,一是个私人密钥,另一个则是公开密钥。这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。
常见的公钥加密算法有: RSA、ElGamal、背包算法、Rabin(RSA的特例)、迪菲-赫尔曼密钥交换协议中的公钥加密算法、椭圆曲线加密算法(英语:Elliptic Curve Cryptography, ECC)。使用最广泛的是RSA算法(由发明者Rivest、Shmir和Adleman姓氏首字母缩写而来)是著名的公开金钥加密算法,ElGamal是另一种常用的非对称加密算法。


RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;

RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

假设Alice想要通过一个不可靠的媒体接收Bob的一条私人消息。她可以用以下的方式来产生一个公钥和一个私钥:
随意选择两个大的质数p和q,p不等于q,计算N=pq。
根据欧拉函数,求得r=\varphi(N) = \varphi(p)\varphi(q)=(p-1)(q-1)
选择一个小于r的整数e,求得e关于模r的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
将p和q的记录销毁。
(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。


ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。
椭圆曲线密码学(Elliptic curve cryptography,缩写为ECC)是基于椭圆曲线数学的一种公钥密码的方法。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。
ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA加密算法——提供相当的或更高等级的安全。ECC的另一个优势是可以定义群之间的双线性映射,基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。


4、散列算法

散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。
单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:
l         MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法,非可逆,相同的明文产生相同的密文。
l         SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值;
SHA-1与MD5的比较
因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
l         对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。
l         对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。
l         速度:在相同的硬件上,SHA-1的运行速度比MD5慢。



0 0