LZ77编码算法

来源:互联网 发布:购买的淘宝店铺安全吗 编辑:程序博客网 时间:2024/06/06 19:33
LZ77 算法在某种意义上又可以称为“滑动窗口压缩”,这是由于该算法将一个虚
拟的,可以跟随压缩进程滑动的窗口作为术语字典,要压缩的字符串如果在该窗口
中出现,则输出其出现位置和长度。使用固定大小窗口进行术语匹配,而不是在所
有已经编码的信息中匹配,是因为匹配算法的时间消耗往往很多,必须限制字典的
大小才能保证算法的效率;随着压缩的进程滑动字典窗口,使其中总包含最近编码
过的信息,是因为对大多数信息而言,要编码的字符串往往在最近的上下文中更容
易找到匹配串。

参照下图,让我们熟悉一下 LZ77 算法的基本流程。

 


1、从当前压缩位置开始,考察未编码的数据,并试图在滑动窗口中找出最长的匹
配字符串,如果找到,则进行步骤 2,否则进行步骤 3。


2、输出三元符号组 ( off, len, c )。其中 off 为窗口中匹配字符串相对窗口边
界的偏移,len 为可匹配的长度,c 为下一个字符。然后将窗口向后滑动 len + 1
个字符,继续步骤 1。

3、输出三元符号组 ( 0, 0, c )。其中 c为下一个字符。然后将窗口向后滑动 
len + 1 个字符,继续步骤 1。

我们结合实例来说明。假设窗口的大小为 10 个字符,我们刚编码过的 10 个字符
是:abcdbbccaa,即将编码的字符为:abaeaaabaee

我们首先发现,可以和要编码字符匹配的最长串为 ab ( off = 0, len = 2 ), ab
的下一个字符为 a,我们输出三元组:( 0, 2, a )

现在窗口向后滑动 3 个字符,窗口中的内容为:dbbccaaaba

下一个字符 e 在窗口中没有匹配,我们输出三元组:( 0, 0, e )

窗口向后滑动 1 个字符,其中内容变为:bbccaaabae

我们马上发现,要编码的 aaabae 在窗口中存在( off = 4, len = 6 ),其后的字
符为 e,我们可以输出:( 4, 6, e )

这样,我们将可以匹配的字符串都变成了指向窗口内的指针,并由此完成了对上述
数据的压缩。

解压缩的过程十分简单,只要我们向压缩时那样维护好滑动的窗口,随着三元组的
不断输入,我们在窗口中找到相应的匹配串,缀上后继字符 c 输出(如果 off 和
len 都为 0 则只输出后继字符 c )即可还原出原始数据。

当然,真正实现 LZ77 算法时还有许多复杂的问题需要解决,下面我们就来对可能
碰到的问题逐一加以探讨。

编码方法

我们必须精心设计三元组中每个分量的表示方法,才能达到较好的压缩效果。一般
来讲,编码的设计要根据待编码的数值的分布情况而定。对于三元组的第一个分量
——窗口内的偏移,通常的经验是,偏移接近窗口尾部的情况要多于接近窗口头部
的情况,这是因为字符串在与其接近的位置较容易找到匹配串,但对于普通的窗口
大小(例如 4096 字节)来说,偏移值基本还是均匀分布的,我们完全可以用固定
的位数来表示它。

编码 off 需要的位数 bitnum = upper_bound( log2( MAX_WND_SIZE ))

由此,如果窗口大小为 4096,用 12 位就可以对偏移编码。如果窗口大小为 
2048,用 11 位就可以了。复杂一点的程序考虑到在压缩开始时,窗口大小并没有
达到 MAX_WND_SIZE,而是随着压缩的进行增长,因此可以根据窗口的当前大小动
态计算所需要的位数,这样可以略微节省一点空间。


对于第二个分量——字符串长度,我们必须考虑到,它在大多数时候不会太大,少
数情况下才会发生大字符串的匹配。显然可以使用一种变长的编码方式来表示该长
度值。在前面我们已经知道,要输出变长的编码,该编码必须满足前缀编码的条件
。其实 Huffman 编码也可以在此处使用,但却不是最好的选择。适用于此处的好
的编码方案很多,我在这里介绍其中两种应用非常广泛的编码。

第一种叫 Golomb 编码。假设对正整数 x 进行 Golomb 编码,选择参数m,令 

b = 2m

q = INT((x - 1)/b)

r = x - qb - 1

则 x 可以被编码为两部分,第一部分是由 q 个 1 加 1 个 0 组成,第二部分为
m 位二进制数,其值为 r。我们将 m = 0, 1, 2, 3 时的 Golomb 编码表列出:


    值x        m =0       m =1       m =2       m = 3
-------------------------------------------------------------
                        00        000        0 000
               10         01        001        0 001
              110        100        010        0 010
             1110        101        011        0 011
            11110       1100       1000        0 100
           111110       1101       1001        0 101
          1111110      11100       1010        0 110
         11111110      11101       1011        0 111
        111111110     111100      11000       10 000
从表中我们可以看出,Golomb 编码不但符合前缀编码的规律,而且可以用较少的
位表示较小的 x 值,而用较长的位表示较大的 x 值。这样,如果 x 的取值倾向
于比较小的数值时,Golomb 编码就可以有效地节省空间。当然,根据 x 的分布规
律不同,我们可以选取不同的 m 值以达到最好的压缩效果。

对我们上面讨论的三元组 len 值,我们可以采用 Golomb 方式编码。上面的讨论
中 len 可能取 0,我们只需用 len + 1 的 Golomb 编码即可。至于参数 m 的选
择,一般经验是取 3 或 4 即可。

可以考虑的另一种变长前缀编码叫做 γ 编码。它也分作前后两个部分,假设对 x
编码,令 q = int( log2x ),则编码的前一部分是 q 个 1 加一个 0,后一部分
是 q 位长的二进制数,其值等于 x - 2q 。γ编码表如下:

    值x    γ编码
---------------------
          0
         10 0
         10 1
        110 00
        110 01

        110 10
        110 11
       1110 000
       1110 001
其实,如果对 off 值考虑其倾向于窗口后部的规律,我们也可以采用变长的编码
方法。但这种方式对窗口较小的情况改善并不明显,有时压缩效果还不如固定长编
码。

对三元组的最后一个分量——字符 c,因为其分布并无规律可循,我们只能老老实
实地用 8 个二进制位对其编码。

根据上面的叙述,相信你一定也能写出高效的编码和解码程序了。

另一种输出方式

LZ77 的原始算法采用三元组输出每一个匹配串及其后续字符,即使没有匹配,我
们仍然需要输出一个 len = 0 的三元组来表示单个字符。试验表明,这种方式对
于某些特殊情况(例如同一字符不断重复的情形)有着较好的适应能力。但对于一
般数据,我们还可以设计出另外一种更为有效的输出方式:将匹配串和不能匹配的
单个字符分别编码、分别输出,输出匹配串时不同时输出后续字符。

我们将每一个输出分成匹配串和单个字符两种类型,并首先输出一个二进制位对其
加以区分。例如,输出 0 表示下面是一个匹配串,输出 1 表示下面是一个单个字
符。

之后,如果要输出的是单个字符,我们直接输出该字符的字节值,这要用 8 个二
进制位。也就是说,我们输出一个单个的字符共需要 9 个二进制位。

如果要输出的是匹配串,我们按照前面的方法依次输出 off 和 len。对 off,我
们可以输出定长编码,也可以输出变长前缀码,对 len 我们输出变长前缀码。有
时候我们可以对匹配长度加以限制,例如,我们可以限制最少匹配 3 个字符。因
为,对于 2 个字符的匹配串,我们使用匹配串的方式输出并不一定比我们直接输
出 2 个单个字符(需要 18 位)节省空间(是否节省取决于我们采用何种编码输
出 off 和 len)。

这种输出方式的优点是输出单个字符的时候比较节省空间。另外,因为不强求每次
都外带一个后续字符,可以适应一些较长匹配的情况。

如何查找匹配串

在滑动窗口中查找最长的匹配串,大概是 LZ77 算法中的核心问题。容易知道,
LZ77 算法中空间和时间的消耗集中于对匹配串的查找算法。每次滑动窗口之后,
都要进行下一个匹配串的查找,如果查找算法的时间效率在 O(n2) 或者更高,总
的算法时间效率就将达到 O(n3),这是我们无法容忍的。正常的顺序匹配算法显然
无法满足我们的要求。事实上,我们有以下几种可选的方案。

1、限制可匹配字符串的最大长度(例如 20 个字节),将窗口中每一个 20 字节
长的串抽取出来,按照大小顺序组织成二叉有序树。在这样的二叉有序树中进行字
符串的查找,其效率是很高的。树中每一个节点大小是 20(key) + 4(off) + 
4(left child) + 4(right child) = 32。树中共有 MAX_WND_SIZE - 19个节点,
假如窗口大小为 4096 字节,树的大小大约是 130k 字节。空间消耗也不算多。这
种方法对匹配串长度的限制虽然影响了压缩程序对一些特殊数据(又很长的匹配串
)的压缩效果,但就平均性能而言,压缩效果还是不错的。

2、将窗口中每个长度为 3 (视情况也可取 2 或 4)的字符串建立索引,先在此
索引中匹配,之后对得出的每个可匹配位置进行顺序查找,直到找到最长匹配字符
串。因为长度为 3 的字符串可以有 2563 种情况,我们不可能用静态数组存储该
索引结构。使用 Hash 表是一个明智的选择。我们可以仅用 MAX_WND_SIZE - 1 的
数组存储每个索引点,Hash 函数的参数当然是字符串本身的 3 个字符值了,Hash
函数算法及 Hash 之后的散列函数很容易设计。每个索引点之后是该字符串出现
的所有位置,我们可以使用单链表来存储每一个位置。值得注意的是,对一些特殊
情况比如 aaaaaa...之类的连续字串,字符串 aaa 有很多连续出现位置,但我们
无需对其中的每一个位置都进行匹配,只要对最左边和最右边的位置操作就可以了
。解决的办法是在链表节点中纪录相同字符连续出现的长度,对连续的出现位置不
再建立新的节点。这种方法可以匹配任意长度的字符串,压缩效果要好一些,但缺
点是查找耗时多于第一种方法。

3、使用字符树( trie )来对窗口内的字符串建立索引,因为字符的取值范围是 
0 - 255,字符树本身的层次不可能太多,3 - 4 层之下就应该换用其他的数据结
构例如 Hash 表等。这种方法可以作为第二种方法的改进算法出现,可以提高查找
速度,但空间的消耗较多。

如果对窗口中的数据进行索引,就必然带来一个索引位置表示的问题,即我们在索
引结构中该往偏移项中存储什么数据:首先,窗口是不断向后滑动的,我们每次将
窗口向后滑动一个位置,索引结构就要作相应的更新,我们必须删除那些已经移动
出窗口的数据,并增加新的索引信息。其次,窗口不断向后滑动的事实使我们无法
用相对窗口左边界的偏移来表示索引位置,因为随着窗口的滑动,每个被索引的字
符串相对窗口左边界的位置都在改变,我们无法承担更新所有索引位置的时间消耗

解决这一问题的办法是,使用一种可以环形滚动的偏移系统来建立索引,而输出匹
配字符串时再将环形偏移还原为相对窗口左边界的真正偏移。让我们用图形来说明
,窗口刚刚达到最大时,环形偏移和原始偏移系统相同:

偏移:     0 1 2 3 4......                                             
Max
          
|--------------------------------------------------------------|
环形偏移: 0 1 2 3 4......                                             
Max
窗口向后滑动一个字节后,滑出窗口左端的环形偏移 0 被补到了窗口右端:

偏移:     0 1 2 3 4......                                             
Max
          
|--------------------------------------------------------------|
环形偏移: 1 2 3 4 5......                                           
Max 0
窗口再滑动 3 个子节后,偏移系统的情况是:

偏移:     0 1 2 3 4......                                             
Max
          
|--------------------------------------------------------------|
环形偏移: 4 5 6 78......                                      Max 0 
1 2 3
依此类推。

我们在索引结构中保存环形偏移,但在查找到匹配字符串后,输出的匹配位置 off
必须是原始偏移(相对窗口左边),这样才可以保证解码程序的顺利执行。我们
用下面的代码将环形偏移还原为原始偏移:

// 由环形 off 得到真正的off(相对于窗口左边)
// 其中 nLeftOff 为当前与窗口左边对应的环形偏移值
int GetRealOff(int off)
{
 

   if (off >= nLeftOff)
        return off - nLeftOff;
    else
        return (_MAX_WINDOW_SIZE - (nLeftOff - off));
}
这样,解码程序无需考虑环形偏移系统就可以顺利高速解码了。

0 0
原创粉丝点击