epoll的两种模式详解

来源:互联网 发布:nginx虚拟主机是什么 编辑:程序博客网 时间:2024/04/29 08:44

本文转自:http://blog.csdn.net/tianmohust/article/details/8502387

EPOLL事件有两种模型 Level Triggered (LT) 和 Edge Triggered (ET):

LT(level triggered,水平触发模式)是缺省的工作方式,并且同时支持 block 和 non-block socket。在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。

ET(edge-triggered,边缘触发模式)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,等到下次有新的数据进来的时候才会再次出发就绪事件。

epoll的LT和ET的区别

LT:水平触发,效率会低于ET触发,尤其在大并发,大流量的情况下。但是LT对代码编写要求比较低,不容易出现问题。LT模式服务编写上的表现是:只要有数据没有被获取,内核就不断通知你,因此不用担心事件丢失的情况。
ET:边缘触发,效率非常高,在并发,大流量的情况下,会比LT少很多epoll的系统调用,因此效率高。但是对编程要求高,需要细致的处理每个请求,否则容易发生丢失事件的情况。
下面举一个列子来说明LT和ET的区别(都是非阻塞模式,阻塞就不说了,效率太低):
采用LT模式下, 如果accept调用有返回就可以马上建立当前这个连接了,再epoll_wait等待下次通知,和select一样。
但是对于ET而言,如果accpet调用有返回,除了建立当前这个连接外,不能马上就epoll_wait还需要继续循环accpet,直到返回-1,且errno==EAGAIN,TAF里面的示例代码:

[cpp] view plaincopy
  1. if(ev.events & EPOLLIN)  
  2. {  
  3.     do  
  4.     {  
  5.         struct sockaddr_in stSockAddr;  
  6.         socklen_t iSockAddrSize = sizeof(sockaddr_in);  
  7.         TC_Socket cs;  
  8.         cs.setOwner(false);  
  9.         //接收连接  
  10.         TC_Socket s;  
  11.         s.init(fd, false, AF_INET);  
  12.         int iRetCode = s.accept(cs, (struct sockaddr *) &stSockAddr, iSockAddrSize);  
  13.         if (iRetCode > 0)  
  14.         {  
  15.             …建立连接  
  16.         }  
  17.         else  
  18.         {  
  19.             //直到发生EAGAIN才不继续accept  
  20.             if(errno == EAGAIN)  
  21.             {  
  22.                 break;  
  23.             }  
  24.         }  
  25.     }while(true);  
  26. }  

同样,recv/send等函数, 都需要到errno==EAGAIN

从本质上讲:与LT相比,ET模型是通过减少系统调用来达到提高并行效率的。

epoll ET详解

ET模型的逻辑:内核的读buffer有内核态主动变化时,内核会通知你, 无需再去mod。写事件是给用户使用的,最开始add之后,内核都不会通知你了,你可以强制写数据(直到EAGAIN或者实际字节数小于 需要写的字节数),当然你可以主动mod OUT,此时如果句柄可以写了(send buffer有空间),内核就通知你。
这里内核态主动的意思是:内核从网络接收了数据放入了读buffer(会通知用户IN事件,即用户可以recv数据)
并且这种通知只会通知一次,如果这次处理(recv)没有到刚才说的两种情况(EAGIN或者实际字节数小于 需要读写的字节数),则该事件会被丢弃,直到下次buffer发生变化。
与LT的差别就在这里体现,LT在这种情况下,事件不会丢弃,而是只要读buffer里面有数据可以让用户读,则不断的通知你。

另外对于ET而言,当然也不一定非send/recv到前面所述的结束条件才结束,用户可以自己随时控制,即用户可以在自己认为合适的时候去设置IN和OUT事件:
1 如果用户主动epoll_mod OUT事件,此时只要该句柄可以发送数据(发送buffer不满),则epoll
_wait就会响应(有时候采用该机制通知epoll_wai醒过来)。
2 如果用户主动epoll_mod IN事件,只要该句柄还有数据可以读,则epoll_wait会响应。
这种逻辑在普通的服务里面都不需要,可能在某些特殊的情况需要。 但是请注意,如果每次调用的时候都去epoll mod将显著降低效率,已经吃过几次亏了!

因此采用et写服务框架的时候,最简单的处理就是:
建立连接的时候epoll_add IN和OUT事件, 后面就不需要管了
每次read/write的时候,到两种情况下结束:
1 发生EAGAIN
2 read/write的实际字节数小于 需要读写的字节数
对于第二点需要注意两点:
A:如果是UDP服务,处理就不完全是这样,必须要recv到发生EAGAIN为止,否则就丢失事件了
因为UDP和TCP不同,是有边界的,每次接收一定是一个完整的UDP包,当然recv的buffer需要至少大于一个UDP包的大小
随便再说一下,一个UDP包到底应该多大?
对于internet,由于MTU的限制,UDP包的大小不要超过576个字节,否则容易被分包,对于公司的IDC环境,建议不要超过1472,否则也比较容易分包。

B 如果发送方发送完数据以后,就close连接,这个时候如果recv到数据是实际字节数小于读写字节数,根据开始所述就认为到EAGIN了从而直接返回,等待下一次事件,这样是有问题的,close事件丢失了!
因此如果依赖这种关闭逻辑的服务,必须接收数据到EAGIN为止,例如lb。

补充:

epoll的两种模式详解:


从man手册中,得到ET和LT的具体描述如下 

EPOLL事件有两种模型: 
Edge Triggered (ET) 
Level Triggered (LT)

假如有这样一个例子: 
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符 
2. 这个时候从管道的另一端被写入了2KB的数据 
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作 
4. 然后我们读取了1KB的数据 
5. 调用epoll_wait(2)...... 

Edge Triggered 工作模式: 
如 果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩 余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄 上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞 写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。 
   i    基于非阻塞文件句柄 
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。 

Level Triggered 工作模式 
相 反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即 使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。 

然后详细解释ET, LT: 

LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你 的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表. 

ET(edge-triggered) 是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述 符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致 了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。 

在 许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试) 

另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后, 
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取: 
while(rs) 

buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0); 
if(buflen < 0) 

    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读 
    // 在这里就当作是该次事件已处理处. 
    if(errno == EAGAIN) 
     break; 
    else 
     return; 
   } 
   else if(buflen == 0) 
   { 
     // 这里表示对端的socket已正常关闭. 
   } 
   if(buflen == sizeof(buf) 
     rs = 1;   // 需要再次读取 
   else 
     rs = 0; 


还 有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然 返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回- 1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不 很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法. 


ssize_t socket_send(int sockfd, const char* buffer, size_t buflen) 

ssize_t tmp; 
size_t total = buflen; 
const char *p = buffer; 


while(1) 

    tmp = send(sockfd, p, total, 0); 
    if(tmp < 0) 
    { 
      // 当send收到信号时,可以继续写,但这里返回-1. 
      if(errno == EINTR) 
        return -1; 


      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满, 
      // 在这里做延时后再重试. 
      if(errno == EAGAIN) 
      { 
        usleep(1000); 
        continue; 
      } 


      return -1; 
    } 


    if((size_t)tmp == total) 
      return buflen; 


    total -= tmp; 
    p += tmp; 



return tmp; 



ssize_t socket_send(int sockfd, const char* buffer, size_t buflen) 

ssize_t tmp; 
size_t total = buflen; 
const char *p = buffer; 


while(1) 

    tmp = send(sockfd, p, total, 0); 
    if(tmp < 0) 
    { 
      // 当send收到信号时,可以继续写,但这里返回-1. 
      if(errno == EINTR) 
        return -1; 


      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满, 
      // 在这里做延时后再重试. 
      if(errno == EAGAIN) 
      { 
        usleep(1000); 
        continue; 
      } 


      return -1; 
    } 


    if((size_t)tmp == total) 
      return buflen; 


    total -= tmp; 
    p += tmp; 



return tmp; 



0 0
原创粉丝点击