大规模数据处理Bloom Filter C++代码实现

来源:互联网 发布:vs2010怎么写c语言 编辑:程序博客网 时间:2024/04/29 19:07
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。

一. 实例 

  为了说明Bloom Filter存在的重要意义,举一个实例:

  假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:

  1. 将访问过的URL保存到数据库。

  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。

  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

  方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

  以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

  方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

  方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

  方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

  方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

  实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。 

二. Bloom Filter的算法 

  废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。

    Bloom Filter算法如下:

    创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。

(1) 加入字符串过程 

  下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

  图1.Bloom Filter加入字符串过程

  很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。

(2) 检查字符串是否存在的过程 

  下面是检查字符串str是否被BitSet记录过的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。

  若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)

  但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。

(3) 删除字符串过程 

   字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。

  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

三. Bloom Filter参数选择 

   (1)哈希函数选择

     哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

   (2)Bit数组大小选择 

     哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考(http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html)。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

     同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。  

四. Bloom Filter实现代码 

[cpp] view plaincopy在CODE上查看代码片派生到我的代码片
  1. class BloomFilter  
  2. {  
  3. public:  
  4.     BloomFilter(const char *name, uint32_t valueCount)  
  5.     {  
  6.         AbortAssert(name != NULL);  
  7.   
  8.         uint32_t bitCount = 20*valueCount;  
  9.         m_MemSize = m_HeadSize + (bitCount/32)*4 + 4;  
  10.         m_MemAddr = (uint8_t*)MemFile::Realloc(name, m_MemSize);  
  11.         AbortAssert(m_MemAddr != NULL);  
  12.   
  13.         m_HeadAddr = (FilterHead *)m_MemAddr;  
  14.         m_FilterAddr = m_MemAddr + m_HeadSize;  
  15.   
  16.         m_HeadAddr->m_ValueCount = valueCount;  
  17.         m_HeadAddr->m_BitCount = bitCount;  
  18.         strncpy(m_HeadAddr->m_FilterName, name, sizeof(m_HeadAddr->m_FilterName));  
  19.     }  
  20.       
  21.     virtual ~BloomFilter()  
  22.     {  
  23.         MemFile::Release(m_MemAddr, m_MemSize);  
  24.     }  
  25.       
  26.     bool Add(const void *value, size_t size)  
  27.     {  
  28.         for(uint32_t i = 0; i < m_SeedCount; ++i)   
  29.         {  
  30.             uint64_t key = HashKey(value, size, i);  
  31.             uint32_t key1 = (key >> 32) & 0xffffffff;  
  32.             uint32_t key2 = key & 0xffffffff;  
  33.             SetBit(key1 % m_HeadAddr->m_BitCount);  
  34.             SetBit(key2 % m_HeadAddr->m_BitCount);  
  35.         }  
  36.       
  37.         ++(m_HeadAddr->m_AddCount);  
  38.       
  39.         return true;  
  40.     }  
  41.   
  42.     bool Exist(const void *value, size_t size)  
  43.     {  
  44.         for(uint32_t i = 0; i < m_SeedCount; ++i)   
  45.         {  
  46.             uint64_t key = HashKey(value, size, i);  
  47.             uint32_t key1 = (key >> 32) & 0xffffffff;  
  48.             uint32_t key2 = key & 0xffffffff;  
  49.       
  50.             if(0 == GetBit(key1 % m_HeadAddr->m_BitCount)) return false;  
  51.       
  52.             if(0 == GetBit(key2 % m_HeadAddr->m_BitCount)) return false;  
  53.         }  
  54.       
  55.         return true;  
  56.     }  
  57.   
  58.     uint32_t Count()  
  59.     {  
  60.         return m_HeadAddr->m_AddCount;  
  61.     }  
  62.   
  63. private:  
  64.     static const uint32_t m_SeedCount = 6;  
  65.     static const uint32_t m_HeadSize = 1024;  
  66.     struct FilterHead  
  67.     {  
  68.         uint32_t m_ValueCount;  
  69.         uint32_t m_BitCount;  
  70.         uint32_t m_AddCount;  
  71.         char     m_FilterName[256];  
  72.     };  
  73.   
  74.     uint32_t    m_MemSize;  
  75.     uint8_t    *m_MemAddr;  
  76.     FilterHead *m_HeadAddr;  
  77.     uint8_t    *m_FilterAddr;  
  78.   
  79.     uint64_t HashKey(const void *value, size_t size, uint32_t index)  
  80.     {  
  81.         uint64_t hashSeed[m_SeedCount] = {7, 11, 13, 19, 31, 37};  
  82.           
  83.         const uint8_t *tmp = (const uint8_t *)value;  
  84.         uint64_t key = 0;  
  85.         for(size_t i = 0; i < size; ++i)  
  86.         {  
  87.             key = key * hashSeed[index] + tmp[i];  
  88.         }  
  89.       
  90.         return key;  
  91.     }  
  92.   
  93.     void SetBit(uint32_t n)  
  94.     {  
  95.         m_FilterAddr[n/8] |= (1 << (n%8));  
  96.     }  
  97.   
  98.     int GetBit(uint32_t n)  
  99.     {  
  100.         return (m_FilterAddr[n/8] & (1<<(n%8)));  
  101.     }  
  102.   
  103.     void Clear()  
  104.     {  
  105.         m_HeadAddr->m_AddCount = 0;  
  106.         memset(m_FilterAddr, 0, m_HeadAddr->m_BitCount / 32 * 4);  
  107.     }  
  108.   
  109.     DISABLE_COPY_AND_ASSIGN(BloomFilter);  
  110. };  

 

注:前面理论介绍部分转载自http://www.cnblogs.com/heaad/archive/2011/01/02/1924195.html
0 0
原创粉丝点击