STL RB Tree(红黑树)分析

来源:互联网 发布:个人可以注册域名吗 编辑:程序博客网 时间:2024/05/18 00:29



当我2014年上半年看内核代码的时候,进程调度用的就是RB  Tree,而现在分析STL源码的时候发现Set和Map也使用了这个数据结构,说明了RBTree的使用时如此的广泛,所以我花了两天时间看了这,分三部分来说明,首先我要说明下红黑树的基本概念,然后说明下STL中的RB Tree的迭代器,最后说下STL中RB Tree容器的实现。


一、红黑树的基本概念


红黑树是平衡二叉搜索树的一种(平衡二叉搜索树中又有AVL Tree),满足二叉搜索树的条件外,还应买足下面的4个条件

1) 每个节点不是红色就是黑色;

2) 根节点是黑色;

3)如果节点是红,那么子节点为黑色;(所以新增节点的父节点为黑色)

4)任一节点到NULL(树尾端)的任何路径,所含的黑节点数必须相同;(所以新增节点为红色)

那么如果按照二叉搜索树的规则插入节点,发现未能符合上面的要求,就得调整颜色并旋转树形。


下面分情况讨论才,插入节点后,发现未能符合要求的几种情况,以及我怎样去调整颜色和旋转树形。


在上图的红黑树种,我们插入四个节点3、8、35、75,插入后首先肯定是红色的,在上图的情况中,这四个插入操作都会违反条件三(红色节点的子节点为黑色),上面的四个点代表了四中情况,而这个图也是很具有代表性的,下面我们就来分情况分析下:

情况一:

插入节点3,如下图所示:


节点3的伯父节点是黑色节点(这里是NULL的话就算作黑色),节点3为外侧插入,这种情况下,需要做一次右旋:


这里的右旋是将爷爷节点下降一层,将父节点上升一层,因为父节点是红色,根据条件三,红色节点的子节点为黑色,所以讲父节点的颜色改为黑色,根据保证条件4,将下降的爷爷节点颜色改为红色,为了满足二叉搜索树的条件,即左子树的值小于/大于右字树的值,所以将父节点的左子树移动给爷爷节点的左子树。


情况二,插入节点8,8的伯父节点(也可以说是叔叔节点)是黑色的(空算作是黑色),插入为内侧插入:


所做的旋转和调色如上图所示,将8上调5下调之后,将8的颜色调为黑色,以满足条件3,将8的左子树移交给5的右子树以满足二叉搜索树的条件,然后再将爷爷节点调整为红色,调整后为上图第二个所示,然后再做一次右旋(是为了减少左右子树的高度差)。


情况三,插入节点75,那么该节点,伯父节点为红色,且插入为外侧插入:


此时爷爷节点85无右旋点,右旋一次以后OK,因为此时曾祖父节点为黑色,所以OK;


情况四,插入节点值为35的节点,和情况三的不同点是调整后,曾祖父节点为红色,那么就得继续往上做同样的旋转和颜色调整,直到不再有父子连续为红色的为止看,如下图所示:



OK,关于如何插入节点已经集中情况已经说完了,那么如何用代码实现则在下面继续说明。


二、红黑树迭代器的实现

这里我先直接将代码贴上来:

typedef bool __rb_tree_color_type;typedef __rb_tree_color_type __rb_tree_red   = false;typedef __rb_tree_color_type __rb_tree_black = true;struct __rb_tree_node_base{typedef __rb_tree_color_typecolor_type;typedef __rb_tree_node_base*base_ptr;color_type color;base_ptr parent;base_ptr left;base_ptr right;static base_ptr minimum (base_ptr x) {while(x->left != 0)x = x->left;return x;}static base_ptr maximum(base_ptr x) {while (x->right != 0)x = x->right;return x;}};template <class Value>struct __rb_tree_node: public __rb_tree_node_base {typedef __rb_tree_node<Value>*link_type;Value value_field;};struct  __rb_tree_base_iterator{typedef__rb_tree_node_base::base_ptr        base_ptr;typedefbidirectional_iterator_tagiterator_category;typedefptrdiff_tdifference_type;base_ptrnode;void increment() {if (node->right != 0) {node = node->right;while (node->left != 0)node = node->left;}else {base_ptr y = node->parent; while ( node == y->right) {node = y;y = y->parent;}if (node->right != y)node = y;}}void decrement() {if( node->color == __rb_tree_red && node->parent->parent == node) {node = node->left;}else if (node->left != 0) {node = node->left;while ( node->right != 0) {node = node->right;}}else {base_ptr y = node->parent;while (node == y->left) {node = y;y = y->parent;}node = y;}}};template <class Value , class Ref , class Ptr>struct  __rb_tree_iterator: public __rb_tree_base_iterator{typedef Value  value_type;typedef Ref referece;typedef Ptr pointer;typedef __rb_tree_iterator<Value , Value & , Value *> iterator;typedef __rb_tree_iterator<Value , const Value &  , const Value*> const_iterator;typedef __rb_tree_iterator<Value , Ref , Ptr>  self;typedef __rb_tree_node<Value>* link_type;__rb_tree_iterator() {}__rb_tree_iterator(link_type x) { node_offset = x ;}__rb_tree_iterator(const iterator &it) { node = it.node; }referece operator*()  const { return link_type(node)->value_field ;}referece operator->() const { return &(operator*());}self& operator++() {increment();return *this;}self operator++(int) {self tmp = *this;increment();return tmp;}self& operator--() {decrement();return *this;}self operator--() {self tmp = *this;decrement();return tmp;}};

这里我要分析下函数increment(),decrement()和increment是类似的,所以这里我只说下increment

void increment() {if (node->right != 0) {node = node->right;while (node->left != 0)node = node->left;}else {base_ptr y = node->parent;while ( node == y->right) {node = y;y = y->parent;}if (node->right != y)node = y;}}

这里increment是为了将node指向下一个大于它的node,node的右子树节点的值是都大于node的,而右子树中最小的节点是右子树最左下的节点;

右子树为空的话,那么只能上溯,如果node是node->parent的右孩子的话,那么node是大于node->parent的值的,相反,是node->parent的左孩子的话,是小于parent的,那么下一个大于node的是node所处的左子树的父节点。

(最后一个判断是为了处理RB-Tree根节点和header之间的特殊关系)


三、红黑树的实现

实现代码比较长,代码逻辑并不难,对照上面的例子分析代码,并不难,这里我只说下函数insert_unique,虽然逻辑也不难;

数据成员header的parent是root,left是leftmost,right是rightmost,这是实现上的技巧

template <class Key , class Value , class KeyOfValue , class Compare , class Alloc = alloc>class rb_tree{protected:typedef void* void_pointer;typedef __rb_tree_node_base *base_ptr;typedef __rb_tree_node<Value>rb_tree_node;typedef simple_alloc<rb_tree_node , Alloc>rb_tree_node_allocator;typedef __rb_tree_color_type color_type;public:typedef Key key_type;typedef Value value_type;typedef const value_type* const_iterator;typedef value_type&reference;typedef const value_type&const_reference;typedef rb_tree_node*link_type;typedef size_t size_type;typedef ptrdiff_tdifference_type;public:link_type get_node() {return rb_tree_node::allocate();}void put_node(link_type p) {rb_tree_node::deallocate();}link_type create_node(const value_type& x) {link_type tmp = get_node();construct(&tmp->value_field , x)return tmp;}link_type clone_node(link_type x) {link_type tmp = create_node(x->value_field);tmp->color = x->color;tmp->left = 0;tmp->right = 0;return tmp;}void destroy_node(link_type p) {destroy(&p->value_field);put_node(p);}protected:size_typenode_count;link_typeheader;Comparekey_compare;link_type&root() const { return (link_type&) header->parent; }link_type&leftmost() const { return (link_type&) header->left; }link_type&rightmost() const { return (link_type&) header->right;}staticlink_type& left(link_type x){return (link_type&) x->left; }staticlink_type& right(link_type x){return (link_type&)x->right;}staticlink_type& parent(link_type x) {return (link_type&)x->parent;}staticreference value(link_type x){returnx->value_field;}staticconst Key&key(link_type x){returnKeyOfValue() (value(x));}staticcolor_type& color(link_type x){return(color_type&) (x->color);}staticlink_type& left(base_ptr x) {return (link_type&) x->left; }staticlink_type& right(base_ptr x) {return (link_type&)x->right;}staticlink_type& parent(base_ptr x) {return (link_type&)x->parent;}staticreference value(base_ptr x){returnx->value_field;}staticconst Key&key(base_ptr x){returnKeyOfValue() (value(x));}staticcolor_type& color(base_ptr x){return(color_type&) (x->color);}staticlink_type minimum(link_type x) {return (link_type) __rb_tree_node_base::minimum(x);}staticlink_type maximum(link_type x) {return (link_type) __rb_tree_node_base::maximum(x);}public:typedef__rb_tree_iterator<value_type , reference , pointer>iterator;private:iterator __insert(base_ptr x , base_ptr y, const value_type& v);link_type__copy(link_type x  , link_type p);void __erase(link_typex);void init() {header = get_node();color(header) = __rb_tree_red;root() = 0;leftmost() = header;rightmost()= header;}public:rb_tree(const Compare& comp = Compare()): node_count(0) , key_compare(comp) {init();}~rb_tree() {clear();put_node(header);}rb_tree<Key , Value , KeyOfValue , Compare , Alloc>&operator= (const rb_tree<Key , Value , KeyOfValue , Compare , Alloc>& x);Compare key_comp() const {return key_compare; }iterator begin() {return leftmost();  }iterator end() {returnheader; }bool empty() {returnnode_count == 0; }size_typesize()const  {return node_count;}size_typemax_size()const {returnsize_type(-1);}public:pair<iterator , bool> inset_unique(const value_type& x);iterator insert_equal(const value_type& x);};template <class Key , class Value , class KeyOfValue , class Compare , class Alloc = alloc>typename rb_tree<Key , Value , KeyOfValue , Compare , Alloc>::iteratorrb_tree<Key , Value , KeyOfValue , Compare , Alloc>::insert_equal(const Value& x){link_type y = header;link_type x = root();while ( x != 0 ) {y = x;x = key_compare(KeyOfValue()(v) , key(x)) ? left(x) : right(x);} return __insert(x , y ,v);}template <class Key , class Value , class KeyOfValue , class Compare , class Alloc = alloc>template <class Key , class Value , class KeyOfValue , class Compare , class Alloc = alloc>typename rb_tree<Key , Value , KeyOfValue , Compare , Alloc>::iteratorrb_tree<Key , Value , KeyOfValue , Compare , Alloc>::__insert(base_ptr x_ , base_ptr y_ , const Value& v){link_typex = (link_type) x_;link_typey = (link_type)y_;link_typez;if ( y == header || x != 0 || key_compare(KeyOfValue()(v) , key(v))) {z = create_node(v);left(y) = z;if ( y == header) {root() = z;rightmost() = z;}else if (y == leftmost())leftmost = z;}else {z = create_node(v);right(y) = z;if ( y == rightmost() )rightmost() = z;}parent(z) = y;left(z)= 0;right(z)= 0;__rb_tree_rebalance(z , header->parent);++node_count;return iterator(z);}inline void __rb_tree_rebalance( __rb_tree_node_base* x  , __rb_tree_node_base* &root){x->color = __rb_tree_red;while ( x != root && x->parent->color == __rb_tree_red ) {if ( x->parent == x->parent->parent->left) {__rb_tree_node_base* y = x->parent->parent->right;if ( y && y->color == __rb_tree_red ) {x->parent->color = __rb_tree_black;y->color = __rb_tree_black;x->parent->parent->color = __rb_tree_red;x = x->parent->parent;}else {if ( x == x->parent->right) {x = x->parent;__rb_tree_rotate_left (x , root);}x->parent->color = __rb_tree_black;x->parent->parent->color = __rb_tree_red;__rb_tree_rotate_right (x->parent->parent , root);}}else {__rb_tree_node_base* y = x->parent->parent->right;if ( y && y->color == __rb_tree_red) {x->parent->color = __rb_tree_black;y->color = __rb_tree_black;x->parent->parent->color = __rb_tree_red;}else {if (x == x->parent->left ) {x = x->parent;__rb_tree_rotate_right(x , root);}x->parent->color = __rb_tree_black;x->parent->parent->color = __rb_tree_red;__rb_tree_rotate_left(x->parent->parent , root);}}}root->color = __rb_tree_black;}inline void __rb_tree_rotate_left(__rb_tree_node_base* x , __rb_tree_node_base* &root){__rb_tree_node_base* y = x->right;x->right = y->left;if (y->left != 0) y->left->parent = x;if (x == root) root = y;else if ( x == x->parent->left )x->parent->left = y;elsex->parent->right = y;y->left = x;x->parent = y;}inline void __rb_tree_rotate_rigth(__rb_tree_node_base* x , __rb_tree_node_base* &root){__rb_tree_node_base* y = x->left;x->left = y->right;if (y->right != 0) y->right->parent = x;if (x == root) root = y;else if ( x == x->parent->left )x->parent->left = y;elsex->parent->right = y;y->right = x;x->parent = y;}

至于函数insert_unique,是保证插入的键值不允许重复

typename rb_tree<Key , Value , KeyOfValue , Compare , Alloc>::iteratorrb_tree<Key , Value , KeyOfValue , Compare , Alloc>::insert_unique(const Value& x){link_type y = header;link_typex = root();boolcomp = true;while ( x != 0 ) {  //从根节点开始 往下寻找适当的插入点y = x ;comp = key_compare(KeyOfValue()(v) , key(x)); x = comp ? left(x) : right(x); //遇大则往左,小于等于则往右}       //离开之后, y即为插入点之父节点,此时它必为叶节点        iterator j = iterator(y);if (comp) { //如果离开while循环的时候,comp是真,说明是插入点是y的左孩子if (j == begin()) { //插入点父节点是最左节点,此时,不会有重复键值return pair<iterator , bool> (__insert(x , y ,v) , true);}else-- j;}if ( key_compare (key(j.node) , KeyOfValue()(v))) returnpair<iterator , bool> (__insert(x , y ,v) , true);return (pair<iterator,bool> , false);}
插入点父节点不是最左边的节点的话,--j,是将j指向比父节点小的上一个节点,和v的键值比较,不相等说明是没有重复,因为插入点是左孩子,必然是小于父节点的,那么和比父节点小点的节点比较(v肯定是大于等于该值的),如果不是等于,则插入;

另外如果插入点是父节点y的右孩子的话,右孩子是大于等于y的,那么和y比较大小,如果不等于则插入。


这里呢,我只备注了下我看代码的时候让我迷惑的那些代码,如果哪有说的不对的地方,欢迎指正,谢谢 O(∩_∩)O哈哈~




1 0
原创粉丝点击